Optimal Design of Doubly Fed Induction Generators Using Field Reconstruction Method
Doubly fed induction generator is attracting attention among options in distributed wind energy harvest. Traditional design and analysis of doubly fed induction generator (DFIG) dominantly rely on lump-parameters and finite-element models. Although finite-element analysis (FEA) method is available,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2010-08, Vol.46 (8), p.3453-3456 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Doubly fed induction generator is attracting attention among options in distributed wind energy harvest. Traditional design and analysis of doubly fed induction generator (DFIG) dominantly rely on lump-parameters and finite-element models. Although finite-element analysis (FEA) method is available, the computational time limits its application in iterative optimal design practices. This paper is based on the use of field reconstruction method (FRM) which can greatly reduce the computation cost, whereas maintaining acceptable accuracy. In order to conduct efficiency optimization, the procedure to calculate flux density and core losses are described. Finally, an optimal design method of DFIG towards maximum annual energy production in a given area with available wind speed information is presented. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/TMAG.2010.2043934 |