Inverse Probability Tilting for Moment Condition Models with Missing Data

We propose a new inverse probability weighting (IPW) estimator for moment condition models with missing data. Our estimator is easy to implement and compares favourably with existing IPW estimators, including augmented IPW estimators, in terms of efficiency, robustness, and higher-order bias. We ill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 2012-07, Vol.79 (3), p.1053-1079
Hauptverfasser: GRAHAM, BRYAN S., DE XAVIER PINTO, CRISTINE CAMPOS, EGEL, DANIEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new inverse probability weighting (IPW) estimator for moment condition models with missing data. Our estimator is easy to implement and compares favourably with existing IPW estimators, including augmented IPW estimators, in terms of efficiency, robustness, and higher-order bias. We illustrate our method with a study of the relationship between early Black—White differences in cognitive achievement and subsequent differences in adult earnings. In our data set, the early childhood achievement measure, the main regressor of interest, is missing for many units.
ISSN:0034-6527
1467-937X
DOI:10.1093/restud/rdr047