Blind linear equalization of PPM signals using third-order moments
A novel blind equalization strategy for pulse position modulation (PPM) based on maximizing the third-order moment of the equalizer output is presented. Compared to traditional fourth-order (e.g. kurtosis-based) methods, third-order moments give faster convergence and are less sensitive to noise. Th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2010-04, Vol.9 (4), p.1298-1302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel blind equalization strategy for pulse position modulation (PPM) based on maximizing the third-order moment of the equalizer output is presented. Compared to traditional fourth-order (e.g. kurtosis-based) methods, third-order moments give faster convergence and are less sensitive to noise. This work demonstrates that the intersymbol interference that plagues typical indoor ultra wideband (UWB) channels can be combatted using a third-moment maximizing blind equalizer which could therefore provide a cold start-up for a decision-directed scheme. Adaptation is shown to be asymptotically globally convergent with increasing time-hopped PPM frame length. Simulation experiments compare the performance to standard fourth-order schemes in practical settings, taking into account the conditions of time-hopping,multiple-access interference and a realistic UWB channel model. |
---|---|
ISSN: | 1536-1276 1558-2248 1558-2248 |
DOI: | 10.1109/TWC.2010.04.091025 |