Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy
A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2010-04, Vol.29 (4), p.982-997 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 997 |
---|---|
container_issue | 4 |
container_start_page | 982 |
container_title | IEEE transactions on medical imaging |
container_volume | 29 |
creator | Graham, M.W. Gibbs, J.D. Cornish, D.C. Higgins, W.E. |
description | A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies. |
doi_str_mv | 10.1109/TMI.2009.2035813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1027159306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5437330</ieee_id><sourcerecordid>1034823378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-e49f43450c47e9863c1e2c1b7c70646a869af2b2ec51cb5a0f6a78d057243ccf3</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQKnW1vQtCGfBQL6MveclkclTrj4UtlnYL3oZM9o2O7EzWZAbZ_76RXT14aC_5QT7vkceXsQMOJ5yDOZ3_mJ4IAJMWVCXHD2zClSpzoeTdRzYBocscoBC7bC_GRwAuFZhPbDdxTCc1YbNfvh7jkGH-PTtrw7NdZ_NAlP2m-476wQ6t77PGh2za2XvKr8d2QYvsJ4V29UDBLrPz4Hv34KPzq_VnttPYZaQv232f_bm6nF_c5LPb6-nF2Sx3UushJ2kaiekr6UqmLNBxEo7X2mkoZGHLwthG1IKc4q5WFprC6nIBSguJzjW4z75t-q6CfxopDlXXRkfLpe3Jj7EyHAoF0uj_So0SELjGJI__KTmgLAWiLhM9ekcf_Rj6NHFSQnNlEIqkYKNc8DEGaqpVaDsb1glVL-lVKb3qJb1qm14q-bptPNYdLd4KXuNK4HADWiJ6e1YS0wCAfwEKV5r7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027159306</pqid></control><display><type>article</type><title>Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Graham, M.W. ; Gibbs, J.D. ; Cornish, D.C. ; Higgins, W.E.</creator><creatorcontrib>Graham, M.W. ; Gibbs, J.D. ; Cornish, D.C. ; Higgins, W.E.</creatorcontrib><description>A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2009.2035813</identifier><identifier>PMID: 20335095</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Airway tree segmentation ; Algorithms ; Artificial Intelligence ; Bronchi - anatomy & histology ; Bronchi - surgery ; Bronchoscopy ; Bronchoscopy - methods ; Computed tomography ; Cost function ; Data mining ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; image-guided intervention ; Imaging, Three-Dimensional - methods ; lung cancer ; Lungs ; Models, Biological ; multidetector computed tomography (MDCT) ; Optimization methods ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Surgery, Computer-Assisted - methods ; three-dimensional (3-D) pulmonary imaging ; Tree graphs ; virtual bronchoscopy</subject><ispartof>IEEE transactions on medical imaging, 2010-04, Vol.29 (4), p.982-997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-e49f43450c47e9863c1e2c1b7c70646a869af2b2ec51cb5a0f6a78d057243ccf3</citedby><cites>FETCH-LOGICAL-c477t-e49f43450c47e9863c1e2c1b7c70646a869af2b2ec51cb5a0f6a78d057243ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5437330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5437330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20335095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, M.W.</creatorcontrib><creatorcontrib>Gibbs, J.D.</creatorcontrib><creatorcontrib>Cornish, D.C.</creatorcontrib><creatorcontrib>Higgins, W.E.</creatorcontrib><title>Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.</description><subject>Airway tree segmentation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bronchi - anatomy & histology</subject><subject>Bronchi - surgery</subject><subject>Bronchoscopy</subject><subject>Bronchoscopy - methods</subject><subject>Computed tomography</subject><subject>Cost function</subject><subject>Data mining</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>image-guided intervention</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>lung cancer</subject><subject>Lungs</subject><subject>Models, Biological</subject><subject>multidetector computed tomography (MDCT)</subject><subject>Optimization methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>three-dimensional (3-D) pulmonary imaging</subject><subject>Tree graphs</subject><subject>virtual bronchoscopy</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9LHDEUB_BQKnW1vQtCGfBQL6MveclkclTrj4UtlnYL3oZM9o2O7EzWZAbZ_76RXT14aC_5QT7vkceXsQMOJ5yDOZ3_mJ4IAJMWVCXHD2zClSpzoeTdRzYBocscoBC7bC_GRwAuFZhPbDdxTCc1YbNfvh7jkGH-PTtrw7NdZ_NAlP2m-476wQ6t77PGh2za2XvKr8d2QYvsJ4V29UDBLrPz4Hv34KPzq_VnttPYZaQv232f_bm6nF_c5LPb6-nF2Sx3UushJ2kaiekr6UqmLNBxEo7X2mkoZGHLwthG1IKc4q5WFprC6nIBSguJzjW4z75t-q6CfxopDlXXRkfLpe3Jj7EyHAoF0uj_So0SELjGJI__KTmgLAWiLhM9ekcf_Rj6NHFSQnNlEIqkYKNc8DEGaqpVaDsb1glVL-lVKb3qJb1qm14q-bptPNYdLd4KXuNK4HADWiJ6e1YS0wCAfwEKV5r7</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Graham, M.W.</creator><creator>Gibbs, J.D.</creator><creator>Cornish, D.C.</creator><creator>Higgins, W.E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201004</creationdate><title>Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy</title><author>Graham, M.W. ; Gibbs, J.D. ; Cornish, D.C. ; Higgins, W.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-e49f43450c47e9863c1e2c1b7c70646a869af2b2ec51cb5a0f6a78d057243ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Airway tree segmentation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bronchi - anatomy & histology</topic><topic>Bronchi - surgery</topic><topic>Bronchoscopy</topic><topic>Bronchoscopy - methods</topic><topic>Computed tomography</topic><topic>Cost function</topic><topic>Data mining</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>image-guided intervention</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>lung cancer</topic><topic>Lungs</topic><topic>Models, Biological</topic><topic>multidetector computed tomography (MDCT)</topic><topic>Optimization methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>three-dimensional (3-D) pulmonary imaging</topic><topic>Tree graphs</topic><topic>virtual bronchoscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Graham, M.W.</creatorcontrib><creatorcontrib>Gibbs, J.D.</creatorcontrib><creatorcontrib>Cornish, D.C.</creatorcontrib><creatorcontrib>Higgins, W.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Graham, M.W.</au><au>Gibbs, J.D.</au><au>Cornish, D.C.</au><au>Higgins, W.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2010-04</date><risdate>2010</risdate><volume>29</volume><issue>4</issue><spage>982</spage><epage>997</epage><pages>982-997</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>20335095</pmid><doi>10.1109/TMI.2009.2035813</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2010-04, Vol.29 (4), p.982-997 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_journals_1027159306 |
source | IEEE Electronic Library (IEL) |
subjects | Airway tree segmentation Algorithms Artificial Intelligence Bronchi - anatomy & histology Bronchi - surgery Bronchoscopy Bronchoscopy - methods Computed tomography Cost function Data mining Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation image-guided intervention Imaging, Three-Dimensional - methods lung cancer Lungs Models, Biological multidetector computed tomography (MDCT) Optimization methods Pattern Recognition, Automated - methods Reproducibility of Results Robustness Sensitivity and Specificity Surgery, Computer-Assisted - methods three-dimensional (3-D) pulmonary imaging Tree graphs virtual bronchoscopy |
title | Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%203-D%20Airway%20Tree%20Segmentation%20for%20Image-Guided%20Peripheral%20Bronchoscopy&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Graham,%20M.W.&rft.date=2010-04&rft.volume=29&rft.issue=4&rft.spage=982&rft.epage=997&rft.pages=982-997&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2009.2035813&rft_dat=%3Cproquest_RIE%3E1034823378%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027159306&rft_id=info:pmid/20335095&rft_ieee_id=5437330&rfr_iscdi=true |