Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy
A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2010-04, Vol.29 (4), p.982-997 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2009.2035813 |