Robust 3-D Airway Tree Segmentation for Image-Guided Peripheral Bronchoscopy

A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2010-04, Vol.29 (4), p.982-997
Hauptverfasser: Graham, M.W., Gibbs, J.D., Cornish, D.C., Higgins, W.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vital task in the planning of peripheral bronchoscopy is the segmentation of the airway tree from a 3-D multidetector computed tomography chest scan. Unfortunately, existing methods typically do not sufficiently extract the necessary peripheral airways needed to plan a procedure. We present a robust method that draws upon both local and global information. The method begins with a conservative segmentation of the major airways. Follow-on stages then exhaustively search for additional candidate airway locations. Finally, a graph-based optimization method counterbalances both the benefit and cost of retaining candidate airway locations for the final segmentation. Results demonstrate that the proposed method typically extracts 2-3 more generations of airways than several other methods, and that the extracted airway trees enable image-guided bronchoscopy deeper into the human lung periphery than past studies.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2009.2035813