An Improved Smoothed [Formula Omitted] Approximation Algorithm for Sparse Representation

[Formula Omitted] norm based algorithms have numerous potential applications where a sparse signal is recovered from a small number of measurements. The direct [Formula Omitted] norm optimization problem is NP-hard. In this paper we work with the the smoothed [Formula Omitted] (SL0) approximation al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-04, Vol.58 (4), p.2194
Hauptverfasser: Hyder, Md. Mashud, Mahata, Kaushik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Formula Omitted] norm based algorithms have numerous potential applications where a sparse signal is recovered from a small number of measurements. The direct [Formula Omitted] norm optimization problem is NP-hard. In this paper we work with the the smoothed [Formula Omitted] (SL0) approximation algorithm for sparse representation. We give an upper bound on the run-time estimation error. This upper bound is tighter than the previously known bound. Subsequently, we develop a reliable stopping criterion. This criterion is helpful in avoiding the problems due to the underlying discontinuities of the [Formula Omitted] cost function. Furthermore, we propose an alternative optimization strategy, which results in a Newton like algorithm.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2009.2040018