Dosimetry of transmission measurements in nuclear medicine : a study using anthropomorphic phantoms and thermoluminescent dosimeters

Quantification in positron emission tomography (PET) and single photon emission tomographic (SPET) relies on attenuation correction which is generally obtained with an additional transmission measurement. Therefore, the evaluation of the radiation doses received by patients needs to include the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine 1998-10, Vol.25 (10), p.1435-1441
Hauptverfasser: ALMEIDA, P, BENDRIEM, B, DE DREUILLE, O, PELTIER, A, PERROT, C, BRULON, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantification in positron emission tomography (PET) and single photon emission tomographic (SPET) relies on attenuation correction which is generally obtained with an additional transmission measurement. Therefore, the evaluation of the radiation doses received by patients needs to include the contribution of transmission procedures in SPET (SPET-TM) and PET (PET-TM). In this work we have measured these doses for both PET-TM and SPET-TM. PET-TM was performed on an ECAT EXACT HR+ (CTI/Siemens) equipped with three rod sources of germanium-68 (380 MBq total) and extended septa. SPET-TM was performed on a DST (SMV) equipped with two collimated line sources of gadolinium-153 (4 GBq total). Two anthropomorphic phantoms representing a human head and a human torso, were used to estimate the doses absorbed in typical cardiac and brain transmission studies. Measurements were made with thermoluminescent dosimeters (TLDs, consisting of lithium fluoride) having characteristics suitable for dosimetry investigations in nuclear medicine. Sets of TLDs were placed inside small plastic bags and then attached to different organs of the phantoms (at least two TLDs were assigned to a given organ). Before and after irradiation the TLDs were placed in a 2.5-cm-thick lead container to prevent exposure from occasional sources. Ambient radiation was monitored and taken into account in calculations. Transmission scans were performed for more than 12 h in each case to decrease statistical noise fluctuations. The doses absorbed by each organ were calculated by averaging the values obtained for each corresponding TLD. These values were used to evaluate the effective dose (ED) following guidelines described in ICRP report number 60. The estimated ED values for cardiac acquisitions were 7.7 x 10(-4) +/- 0.4 x 10(-4) mSv/MBq.h and 1.9 x 10(-6) +/- 0.4 x 10(-6) mSv/MBq.h for PET-TM and SPET-TM, respectively. For brain scans, the values of ED were calculated as 2.7 x 10(-4) +/- 0.2 x 10(-4) mSv/MBq.h for PET-TM and 5.2 x 10(-7) +/- 2.3 x 10(-7) mSv/MBq.h for SPET-TM. In our institution, PET-TM is usually performed for 15 min prior to emission. SPET-TM is performed simultaneously with emission and usually lasts 30 and 15 min for brain and cardiac acquisitions respectively. Under these conditions ED values, estimated for typical source activities at delivery time (22,000 MBq in SPET and 555 MBq for PET), were 1.1 x 10(-1) +/- 0.1 x 10(-1) mSv and 1.1 x 10(-2) +/- 0.2 x 10(-2) mSv for cardiac
ISSN:0340-6997
1619-7070
1619-7089
DOI:10.1007/s002590050320