Effect of plant growth regulators on morphogenesis and forskolin production in Plectranthus barbatus Andrews

Plectranthus barbatus (syn. Coleus forskohlii) is the only known source of forskolin, a compound with a wide range of pharmacological activities. Here, an efficient protocol for adventitious root regeneration from leaf explants of P. barbatus was developed. Different concentrations of plant growth r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In vitro cellular & developmental biology. Plant 2012-04, Vol.48 (2), p.208-215
Hauptverfasser: Balasubramanya, Subbanarashimhan, Rajanna, Lingaiah, Anuradha, Maniyam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plectranthus barbatus (syn. Coleus forskohlii) is the only known source of forskolin, a compound with a wide range of pharmacological activities. Here, an efficient protocol for adventitious root regeneration from leaf explants of P. barbatus was developed. Different concentrations of plant growth regulators individually and in combination were used to induce roots in vitro. Morphogenic responses and forskolin production varied depending on the concentrations of plant growth regulators added to the medium. Lower concentrations of auxins trigger callus proliferation while higher concentrations induced adventitious root regeneration. Of all the auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2 (2,4,5-trichlorophenoxy) propionic acid (2,4,5-TP), and 4-amino-3,5,6-trichloropicolinic acid (picloram) induced callus, whereas α-naphthaleneacetic acid (NAA), indole-3-acetic acid, and indole-3-butyric acid induced rhizogenesis. Use of picloram at 1.0 and 0.5 mg l−1 resulted in the formation of friable callus, and when combined with 0.5 mg l−1 6-benzylamino purine (BA), rhizogenic callus was produced. The cytokinins BA and kinetin produced a mixed response of multiple shoot regeneration, callus proliferation, and rhizogenesis. The maximum forskolin content of 1,178 mg kg−1 dry weight was found in root cultures initiated on Gamborg’s B5 medium supplemented with 0.5 mg l−1 NAA. The biosynthesis of forskolin was differentiation dependent, and rhizogenic cultures exhibited the maximum biosynthetic potential for forskolin.
ISSN:1054-5476
1475-2689
DOI:10.1007/s11627-011-9417-9