Stochastic approximation with long range dependent and heavy tailed noise
Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise...
Gespeichert in:
Veröffentlicht in: | Queueing systems 2012-06, Vol.71 (1-2), p.221-242 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 1-2 |
container_start_page | 221 |
container_title | Queueing systems |
container_volume | 71 |
creator | Anantharam, V. Borkar, V. S. |
description | Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed. |
doi_str_mv | 10.1007/s11134-012-9283-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1017943376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674955961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8VzNJ2yRHWfxYWPCgnkNIp9sua1qTrLr_3qz14EUYGIZ57828R8glsGtgTN5EABBlwYAXmitRsCMyg0rmqSzFMZkxXsm8FeyUnMW4YYzVvNIzsnxOg-tsTL2jdhzD8NW_2dQPnn72qaPbwa9psH6NtMERfYM-Uesb2qH92NNk-y021A99xHNy0tptxIvfPiev93cvi8di9fSwXNyuCiegTgWUEhpZKtROI3JhhURVtS2rpVQMnShtBTXqGp1yQuBPAVdKyVZbAWJOribd_Oz7DmMym2EXfD5pgIHUpRCyziiYUC4MMQZszRiys7DPIHNIzEyJmZyYOSRmWObwiRMzNlsOf5X_I30DQ7RtXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017943376</pqid></control><display><type>article</type><title>Stochastic approximation with long range dependent and heavy tailed noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Anantharam, V. ; Borkar, V. S.</creator><creatorcontrib>Anantharam, V. ; Borkar, V. S.</creatorcontrib><description>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-012-9283-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Approximation ; Business and Management ; Computer Communication Networks ; Control ; Differential equations ; Electrical engineering ; Noise ; Operations Research/Decision Theory ; Ordinary differential equations ; Probability Theory and Stochastic Processes ; Queuing ; Robotics ; Studies ; Supply Chain Management ; Systems Theory</subject><ispartof>Queueing systems, 2012-06, Vol.71 (1-2), p.221-242</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</citedby><cites>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-012-9283-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-012-9283-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Anantharam, V.</creatorcontrib><creatorcontrib>Borkar, V. S.</creatorcontrib><title>Stochastic approximation with long range dependent and heavy tailed noise</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Differential equations</subject><subject>Electrical engineering</subject><subject>Noise</subject><subject>Operations Research/Decision Theory</subject><subject>Ordinary differential equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queuing</subject><subject>Robotics</subject><subject>Studies</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAU8VzNJ2yRHWfxYWPCgnkNIp9sua1qTrLr_3qz14EUYGIZ57828R8glsGtgTN5EABBlwYAXmitRsCMyg0rmqSzFMZkxXsm8FeyUnMW4YYzVvNIzsnxOg-tsTL2jdhzD8NW_2dQPnn72qaPbwa9psH6NtMERfYM-Uesb2qH92NNk-y021A99xHNy0tptxIvfPiev93cvi8di9fSwXNyuCiegTgWUEhpZKtROI3JhhURVtS2rpVQMnShtBTXqGp1yQuBPAVdKyVZbAWJOribd_Oz7DmMym2EXfD5pgIHUpRCyziiYUC4MMQZszRiys7DPIHNIzEyJmZyYOSRmWObwiRMzNlsOf5X_I30DQ7RtXw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Anantharam, V.</creator><creator>Borkar, V. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Stochastic approximation with long range dependent and heavy tailed noise</title><author>Anantharam, V. ; Borkar, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Differential equations</topic><topic>Electrical engineering</topic><topic>Noise</topic><topic>Operations Research/Decision Theory</topic><topic>Ordinary differential equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queuing</topic><topic>Robotics</topic><topic>Studies</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantharam, V.</creatorcontrib><creatorcontrib>Borkar, V. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantharam, V.</au><au>Borkar, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic approximation with long range dependent and heavy tailed noise</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>71</volume><issue>1-2</issue><spage>221</spage><epage>242</epage><pages>221-242</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11134-012-9283-0</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-0130 |
ispartof | Queueing systems, 2012-06, Vol.71 (1-2), p.221-242 |
issn | 0257-0130 1572-9443 |
language | eng |
recordid | cdi_proquest_journals_1017943376 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Approximation Business and Management Computer Communication Networks Control Differential equations Electrical engineering Noise Operations Research/Decision Theory Ordinary differential equations Probability Theory and Stochastic Processes Queuing Robotics Studies Supply Chain Management Systems Theory |
title | Stochastic approximation with long range dependent and heavy tailed noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20approximation%20with%20long%20range%20dependent%20and%20heavy%20tailed%20noise&rft.jtitle=Queueing%20systems&rft.au=Anantharam,%20V.&rft.date=2012-06-01&rft.volume=71&rft.issue=1-2&rft.spage=221&rft.epage=242&rft.pages=221-242&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-012-9283-0&rft_dat=%3Cproquest_cross%3E2674955961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017943376&rft_id=info:pmid/&rfr_iscdi=true |