Stochastic approximation with long range dependent and heavy tailed noise

Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Queueing systems 2012-06, Vol.71 (1-2), p.221-242
Hauptverfasser: Anantharam, V., Borkar, V. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 1-2
container_start_page 221
container_title Queueing systems
container_volume 71
creator Anantharam, V.
Borkar, V. S.
description Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.
doi_str_mv 10.1007/s11134-012-9283-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1017943376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674955961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8VzNJ2yRHWfxYWPCgnkNIp9sua1qTrLr_3qz14EUYGIZ57828R8glsGtgTN5EABBlwYAXmitRsCMyg0rmqSzFMZkxXsm8FeyUnMW4YYzVvNIzsnxOg-tsTL2jdhzD8NW_2dQPnn72qaPbwa9psH6NtMERfYM-Uesb2qH92NNk-y021A99xHNy0tptxIvfPiev93cvi8di9fSwXNyuCiegTgWUEhpZKtROI3JhhURVtS2rpVQMnShtBTXqGp1yQuBPAVdKyVZbAWJOribd_Oz7DmMym2EXfD5pgIHUpRCyziiYUC4MMQZszRiys7DPIHNIzEyJmZyYOSRmWObwiRMzNlsOf5X_I30DQ7RtXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017943376</pqid></control><display><type>article</type><title>Stochastic approximation with long range dependent and heavy tailed noise</title><source>SpringerLink Journals - AutoHoldings</source><creator>Anantharam, V. ; Borkar, V. S.</creator><creatorcontrib>Anantharam, V. ; Borkar, V. S.</creatorcontrib><description>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</description><identifier>ISSN: 0257-0130</identifier><identifier>EISSN: 1572-9443</identifier><identifier>DOI: 10.1007/s11134-012-9283-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Approximation ; Business and Management ; Computer Communication Networks ; Control ; Differential equations ; Electrical engineering ; Noise ; Operations Research/Decision Theory ; Ordinary differential equations ; Probability Theory and Stochastic Processes ; Queuing ; Robotics ; Studies ; Supply Chain Management ; Systems Theory</subject><ispartof>Queueing systems, 2012-06, Vol.71 (1-2), p.221-242</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</citedby><cites>FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11134-012-9283-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11134-012-9283-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Anantharam, V.</creatorcontrib><creatorcontrib>Borkar, V. S.</creatorcontrib><title>Stochastic approximation with long range dependent and heavy tailed noise</title><title>Queueing systems</title><addtitle>Queueing Syst</addtitle><description>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Business and Management</subject><subject>Computer Communication Networks</subject><subject>Control</subject><subject>Differential equations</subject><subject>Electrical engineering</subject><subject>Noise</subject><subject>Operations Research/Decision Theory</subject><subject>Ordinary differential equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Queuing</subject><subject>Robotics</subject><subject>Studies</subject><subject>Supply Chain Management</subject><subject>Systems Theory</subject><issn>0257-0130</issn><issn>1572-9443</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UE1LxDAQDaLguvoDvAU8VzNJ2yRHWfxYWPCgnkNIp9sua1qTrLr_3qz14EUYGIZ57828R8glsGtgTN5EABBlwYAXmitRsCMyg0rmqSzFMZkxXsm8FeyUnMW4YYzVvNIzsnxOg-tsTL2jdhzD8NW_2dQPnn72qaPbwa9psH6NtMERfYM-Uesb2qH92NNk-y021A99xHNy0tptxIvfPiev93cvi8di9fSwXNyuCiegTgWUEhpZKtROI3JhhURVtS2rpVQMnShtBTXqGp1yQuBPAVdKyVZbAWJOribd_Oz7DmMym2EXfD5pgIHUpRCyziiYUC4MMQZszRiys7DPIHNIzEyJmZyYOSRmWObwiRMzNlsOf5X_I30DQ7RtXw</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Anantharam, V.</creator><creator>Borkar, V. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Stochastic approximation with long range dependent and heavy tailed noise</title><author>Anantharam, V. ; Borkar, V. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1471d748e9c9ee23a37e85ff067780ec34a516e96ec8c33e33e33128887f9a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Business and Management</topic><topic>Computer Communication Networks</topic><topic>Control</topic><topic>Differential equations</topic><topic>Electrical engineering</topic><topic>Noise</topic><topic>Operations Research/Decision Theory</topic><topic>Ordinary differential equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Queuing</topic><topic>Robotics</topic><topic>Studies</topic><topic>Supply Chain Management</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anantharam, V.</creatorcontrib><creatorcontrib>Borkar, V. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Queueing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantharam, V.</au><au>Borkar, V. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic approximation with long range dependent and heavy tailed noise</atitle><jtitle>Queueing systems</jtitle><stitle>Queueing Syst</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>71</volume><issue>1-2</issue><spage>221</spage><epage>242</epage><pages>221-242</pages><issn>0257-0130</issn><eissn>1572-9443</eissn><abstract>Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11134-012-9283-0</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-0130
ispartof Queueing systems, 2012-06, Vol.71 (1-2), p.221-242
issn 0257-0130
1572-9443
language eng
recordid cdi_proquest_journals_1017943376
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Business and Management
Computer Communication Networks
Control
Differential equations
Electrical engineering
Noise
Operations Research/Decision Theory
Ordinary differential equations
Probability Theory and Stochastic Processes
Queuing
Robotics
Studies
Supply Chain Management
Systems Theory
title Stochastic approximation with long range dependent and heavy tailed noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20approximation%20with%20long%20range%20dependent%20and%20heavy%20tailed%20noise&rft.jtitle=Queueing%20systems&rft.au=Anantharam,%20V.&rft.date=2012-06-01&rft.volume=71&rft.issue=1-2&rft.spage=221&rft.epage=242&rft.pages=221-242&rft.issn=0257-0130&rft.eissn=1572-9443&rft_id=info:doi/10.1007/s11134-012-9283-0&rft_dat=%3Cproquest_cross%3E2674955961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017943376&rft_id=info:pmid/&rfr_iscdi=true