Stochastic approximation with long range dependent and heavy tailed noise

Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Queueing systems 2012-06, Vol.71 (1-2), p.221-242
Hauptverfasser: Anantharam, V., Borkar, V. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stability and convergence properties of stochastic approximation algorithms are analyzed when the noise includes a long range dependent component (modeled by a fractional Brownian motion) and a heavy tailed component (modeled by a symmetric stable process), in addition to the usual ‘martingale noise’. This is motivated by the emergent applications in communications. The proofs are based on comparing suitably interpolated iterates with a limiting ordinary differential equation. Related issues such as asynchronous implementations, Markov noise, etc. are briefly discussed.
ISSN:0257-0130
1572-9443
DOI:10.1007/s11134-012-9283-0