Decoding Cyclic Codes up to a New Bound on the Minimum Distance

A new lower bound on the minimum distance of q -ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem bound and, for some codes, upon the Hartmann-Tzeng bound. Several Boston bounds are special cases of our bound. For some classes of codes, the bound on the minimum di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2012-06, Vol.58 (6), p.3951-3960
Hauptverfasser: Zeh, Alexander, Wachter-Zeh, Antonia, Bezzateev, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new lower bound on the minimum distance of q -ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem bound and, for some codes, upon the Hartmann-Tzeng bound. Several Boston bounds are special cases of our bound. For some classes of codes, the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2185924