Decoding Cyclic Codes up to a New Bound on the Minimum Distance
A new lower bound on the minimum distance of q -ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem bound and, for some codes, upon the Hartmann-Tzeng bound. Several Boston bounds are special cases of our bound. For some classes of codes, the bound on the minimum di...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2012-06, Vol.58 (6), p.3951-3960 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new lower bound on the minimum distance of q -ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem bound and, for some codes, upon the Hartmann-Tzeng bound. Several Boston bounds are special cases of our bound. For some classes of codes, the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2012.2185924 |