QTLs for murine red blood cell parameters in LG/J and SM/J F^sub 2^ and advanced intercross lines

Red blood cells are essential for oxygen transport and other physiologic processes. Red cell characteristics are typically determined by complete blood counts which measure parameters such as hemoglobin levels and mean corpuscular volumes; these parameters reflect the quality and quantity of red cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mammalian genome 2012-06, Vol.23 (5-6), p.356
Hauptverfasser: Bartnikas, Thomas B, Parker, Clarissa C, Cheng, Riyan, Campagna, Dean R, Lim, Jackie E, Palmer, Abraham A, Fleming, Mark D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red blood cells are essential for oxygen transport and other physiologic processes. Red cell characteristics are typically determined by complete blood counts which measure parameters such as hemoglobin levels and mean corpuscular volumes; these parameters reflect the quality and quantity of red cells in the circulation at any particular moment. To identify the genetic determinants of red cell parameters, we performed genome-wide association analysis on LG/J × SM/J F^sub 2^ and F^sub 34^ advanced intercross lines using single nucleotide polymorphism genotyping and a novel algorithm for mapping in the combined populations. We identified significant quantitative trait loci for red cell parameters on chromosomes 6, 7, 8, 10, 12, and 17; our use of advanced intercross lines reduced the quantitative trait loci interval width from 1.6- to 9.4-fold. Using the genomic sequences of LG/J and SM/J mice, we identified nonsynonymous coding single nucleotide polymorphisms in candidate genes residing within quantitative trait loci and performed sequence alignments and molecular modeling to gauge the potential impact of amino acid substitutions. These results should aid in the identification of genes critical for red cell physiology and metabolism and demonstrate the utility of advanced intercross lines in uncovering genetic determinants of inherited traits.[PUBLICATION ABSTRACT]
ISSN:0938-8990
1432-1777
DOI:10.1007/s00335-012-9393-3