Length spectra and degeneration of flat metrics
In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metr...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2010-11, Vol.182 (2), p.231-277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metrics. Secondly, we give an embedding into the space of geodesic currents and use this to obtain a compactification for the space of flat metrics. The geometric interpretation is that flat metrics degenerate to
mixed structures
on the surface: part flat metric and part measured foliation. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-010-0262-y |