Length spectra and degeneration of flat metrics

In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2010-11, Vol.182 (2), p.231-277
Hauptverfasser: Duchin, Moon, Leininger, Christopher J., Rafi, Kasra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider flat metrics (semi-translation structures) on surfaces of finite type. There are two main results. The first is a complete description of when a set of simple closed curves is spectrally rigid, that is, when the length vector determines a metric among the class of flat metrics. Secondly, we give an embedding into the space of geodesic currents and use this to obtain a compactification for the space of flat metrics. The geometric interpretation is that flat metrics degenerate to mixed structures on the surface: part flat metric and part measured foliation.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-010-0262-y