A New Truncation Strategy for the Higher-Order Singular Value Decomposition

We present an alternative strategy for truncating the higher-order singular value decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the HOSVD, which we refer to as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2012-01, Vol.34 (2), p.A1027-A1052
Hauptverfasser: Vannieuwenhoven, Nick, Vandebril, Raf, Meerbergen, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an alternative strategy for truncating the higher-order singular value decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the HOSVD, which we refer to as the sequentially truncated higher-order singular value decomposition (ST-HOSVD). This decomposition retains several favorable properties of the T-HOSVD, while reducing the number of operations required to compute the decomposition and practically always improving the approximation error. Three applications are presented, demonstrating the effectiveness of ST-HOSVD. In the first application, ST-HOSVD, T-HOSVD, and higher-order orthogonal iteration (HOOI) are employed to compress a database of images of faces. On average, the ST-HOSVD approximation was only 0.1\% worse than the optimum computed by HOOI, while cutting the execution time by a factor of 20. In the second application, classification of handwritten digits, ST-HOSVD achieved a speedup factor of 50 over T-HOSVD during the training phase, and reduced the classification time and storage costs, while not significantly affecting the classification error. The third application demonstrates the effectiveness of ST-HOSVD in compressing results from a numerical simulation of a partial differential equation. In such problems, ST-HOSVD inevitably can greatly improve the running time. We present an example wherein the 2 hour 45 minute calculation of T-HOSVD was reduced to just over one minute by ST-HOSVD, representing a speedup factor of 133, while even improving the memory consumption.
ISSN:1064-8275
1095-7197
DOI:10.1137/110836067