A New Truncation Strategy for the Higher-Order Singular Value Decomposition
We present an alternative strategy for truncating the higher-order singular value decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the HOSVD, which we refer to as t...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2012-01, Vol.34 (2), p.A1027-A1052 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an alternative strategy for truncating the higher-order singular value decomposition (T-HOSVD). An error expression for an approximate Tucker decomposition with orthogonal factor matrices is presented, leading us to propose a novel truncation strategy for the HOSVD, which we refer to as the sequentially truncated higher-order singular value decomposition (ST-HOSVD). This decomposition retains several favorable properties of the T-HOSVD, while reducing the number of operations required to compute the decomposition and practically always improving the approximation error. Three applications are presented, demonstrating the effectiveness of ST-HOSVD. In the first application, ST-HOSVD, T-HOSVD, and higher-order orthogonal iteration (HOOI) are employed to compress a database of images of faces. On average, the ST-HOSVD approximation was only 0.1\% worse than the optimum computed by HOOI, while cutting the execution time by a factor of 20. In the second application, classification of handwritten digits, ST-HOSVD achieved a speedup factor of 50 over T-HOSVD during the training phase, and reduced the classification time and storage costs, while not significantly affecting the classification error. The third application demonstrates the effectiveness of ST-HOSVD in compressing results from a numerical simulation of a partial differential equation. In such problems, ST-HOSVD inevitably can greatly improve the running time. We present an example wherein the 2 hour 45 minute calculation of T-HOSVD was reduced to just over one minute by ST-HOSVD, representing a speedup factor of 133, while even improving the memory consumption. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/110836067 |