Crystallographic and NMR spectroscopic protein structures: Interresidue contacts

Interresidue pair contacts were analyzed in detail for four pairs of protein structures solved using X-ray analysis (X-ray) and nuclear magnetic resonance (NMR). In the four NMR structures, at distances of ≤4.0 Å, the total number of pair contacts was 4–9% lower and, in general, the pair contacts we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology (New York) 2012-04, Vol.46 (2), p.287-303
Hauptverfasser: Abaturov, L. V., Nosova, N. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interresidue pair contacts were analyzed in detail for four pairs of protein structures solved using X-ray analysis (X-ray) and nuclear magnetic resonance (NMR). In the four NMR structures, at distances of ≤4.0 Å, the total number of pair contacts was 4–9% lower and, in general, the pair contacts were 0.02–0.16 Å shorter compared to the X-ray structures. Each of the four structural pairs contained 83–94% common pair contacts (CPCs), which were formed by identical residues in both structures; the other 6–17% were longer intrinsic pair contacts (IPCs) formed by different residues in NMR and X-ray structures, while the latter contained more IPC. Every NMR structure contained three types of CPC that were shorter, longer, or equal to the identical contact pairs in the X-ray structure of this protein. Methodologically different short CPCs prevailed at a known distance dependence of the interresidue contact density in 60–61 pairs of NMR/X-ray structures. Among the analyzed four structural pairs, contact shortening appeared upon the energy minimization of the crambin NMR structure and upon solving the ubiquitin, hen lysozyme, and monomeric hemoglobin NMR structures using X-PLOR software with decreased van der Waals atomic radii. The degree of contact shortening in the NMR structures diminished with an increase in the NMR data used to solve these structures. Among the 60 pairs of NMR/X-ray structures, the major difference between α-helical and β-structural proteins in the dependences on interresidue distances of average contact density appeared due to strong α/β differences in the backbone local geometry.
ISSN:0026-8933
1608-3245
DOI:10.1134/S0026893312020021