On Nonlinear Stochastic Balance Laws

We are concerned with multidimensional stochastic balance laws. We identify a class of nonlinear balance laws for which uniform spatial BV bound for vanishing viscosity approximations can be achieved. Moreover, we establish temporal equicontinuity in L 1 of the approximations, uniformly in the visco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2012-06, Vol.204 (3), p.707-743
Hauptverfasser: Chen, Gui-Qiang, Ding, Qian, Karlsen, Kenneth H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned with multidimensional stochastic balance laws. We identify a class of nonlinear balance laws for which uniform spatial BV bound for vanishing viscosity approximations can be achieved. Moreover, we establish temporal equicontinuity in L 1 of the approximations, uniformly in the viscosity coefficient. Using these estimates, we supply a multidimensional existence theory of stochastic entropy solutions. In addition, we establish an error estimate for the stochastic viscosity method, as well as an explicit estimate for the continuous dependence of stochastic entropy solutions on the flux and random source functions. Various further generalizations of the results are discussed.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-011-0489-9