Lévy stable distributions via associated integral transform

We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Lévy stable probability distributions g α(x), 0 ⩽ x < ∞, 0 < α < 1. We demonstrate that the knowledge of one such a distribution g α(x) suffices to obtain exactly \documentclass[12pt]{minimal}\begin{doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2012-05, Vol.53 (5), p.053302-053302-10
Hauptverfasser: Górska, K., Penson, K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Lévy stable probability distributions g α(x), 0 ⩽ x < ∞, 0 < α < 1. We demonstrate that the knowledge of one such a distribution g α(x) suffices to obtain exactly \documentclass[12pt]{minimal}\begin{document}$g_{\alpha ^{p}}(x)$\end{document} g α p ( x ) , p = 2, 3, …  . Similarly, from known g α(x) and g β(x), 0 < α, β < 1, we obtain g αβ(x). The method is based on the construction of the integral operator, called Lévy transform, which implements the above operations. For α rational, α = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g l/k (x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4709443