Variable selection in robust regression models for longitudinal data

In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the ora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2012-08, Vol.109, p.156-167
Hauptverfasser: Fan, Yali, Qin, Guoyou, Zhu, Zhongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 156
container_title Journal of multivariate analysis
container_volume 109
creator Fan, Yali
Qin, Guoyou
Zhu, Zhongyi
description In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.
doi_str_mv 10.1016/j.jmva.2012.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1011302385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X12000760</els_id><sourcerecordid>2652903961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-988a49aa6bbcfc730332d288e1960ee5d09eaae718358d18f2e8fc494ac8867b3</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoeH38AVcF162TpI8U3IhvFNyouAvTdKopvc016b3gvzf1iksXZwaScw7Dx9gJh4wDL8_6rF9uMBPARQYyA6h22IJDXaSVyOUuWwDkVSqK-m2fHYTQA3BeVPmCXb2it9gMlAQayEzWjYkdE--adZgST--eQpgfl66lISSd88ngxnc7rVs74pC0OOER2-twCHT8uw_Zy8318-Vd-vh0e3958ZiaAsoprZXCvEYsm8Z0ppIgpWiFUsTrEoiKFmpCpIorWaiWq06Q6kxe52iUKqtGHrLTbe_Ku881hUn3bu3jFUFHClyCkKqILrF1Ge9C8NTplbdL9F_RNPtK3euZlp5paZA60oqhh23I04rMX4KIZuuIeqMlRqBxfkX9RCXaKBO1mj-LUvOy0h_TMradb9siMtpY8joYS6Oh1voIWbfO_nfMN4_ajPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011302385</pqid></control><display><type>article</type><title>Variable selection in robust regression models for longitudinal data</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fan, Yali ; Qin, Guoyou ; Zhu, Zhongyi</creator><creatorcontrib>Fan, Yali ; Qin, Guoyou ; Zhu, Zhongyi</creatorcontrib><description>In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2012.03.007</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Correlation analysis ; Longitudinal data ; Longitudinal data Penalized estimating equation Robust method Variable selection ; Mathematical models ; Parameter estimation ; Penalized estimating equation ; Regression analysis ; Robust method ; Simulation ; Studies ; Variable selection</subject><ispartof>Journal of multivariate analysis, 2012-08, Vol.109, p.156-167</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright Taylor &amp; Francis Group Aug 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-988a49aa6bbcfc730332d288e1960ee5d09eaae718358d18f2e8fc494ac8867b3</citedby><cites>FETCH-LOGICAL-c506t-988a49aa6bbcfc730332d288e1960ee5d09eaae718358d18f2e8fc494ac8867b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2012.03.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a109_3ay_3a2012_3ai_3ac_3ap_3a156-167.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Yali</creatorcontrib><creatorcontrib>Qin, Guoyou</creatorcontrib><creatorcontrib>Zhu, Zhongyi</creatorcontrib><title>Variable selection in robust regression models for longitudinal data</title><title>Journal of multivariate analysis</title><description>In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.</description><subject>Correlation analysis</subject><subject>Longitudinal data</subject><subject>Longitudinal data Penalized estimating equation Robust method Variable selection</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Penalized estimating equation</subject><subject>Regression analysis</subject><subject>Robust method</subject><subject>Simulation</subject><subject>Studies</subject><subject>Variable selection</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kEtLxTAQhYMoeH38AVcF162TpI8U3IhvFNyouAvTdKopvc016b3gvzf1iksXZwaScw7Dx9gJh4wDL8_6rF9uMBPARQYyA6h22IJDXaSVyOUuWwDkVSqK-m2fHYTQA3BeVPmCXb2it9gMlAQayEzWjYkdE--adZgST--eQpgfl66lISSd88ngxnc7rVs74pC0OOER2-twCHT8uw_Zy8318-Vd-vh0e3958ZiaAsoprZXCvEYsm8Z0ppIgpWiFUsTrEoiKFmpCpIorWaiWq06Q6kxe52iUKqtGHrLTbe_Ku881hUn3bu3jFUFHClyCkKqILrF1Ge9C8NTplbdL9F_RNPtK3euZlp5paZA60oqhh23I04rMX4KIZuuIeqMlRqBxfkX9RCXaKBO1mj-LUvOy0h_TMradb9siMtpY8joYS6Oh1voIWbfO_nfMN4_ajPE</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Fan, Yali</creator><creator>Qin, Guoyou</creator><creator>Zhu, Zhongyi</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20120801</creationdate><title>Variable selection in robust regression models for longitudinal data</title><author>Fan, Yali ; Qin, Guoyou ; Zhu, Zhongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-988a49aa6bbcfc730332d288e1960ee5d09eaae718358d18f2e8fc494ac8867b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Correlation analysis</topic><topic>Longitudinal data</topic><topic>Longitudinal data Penalized estimating equation Robust method Variable selection</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Penalized estimating equation</topic><topic>Regression analysis</topic><topic>Robust method</topic><topic>Simulation</topic><topic>Studies</topic><topic>Variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yali</creatorcontrib><creatorcontrib>Qin, Guoyou</creatorcontrib><creatorcontrib>Zhu, Zhongyi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yali</au><au>Qin, Guoyou</au><au>Zhu, Zhongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable selection in robust regression models for longitudinal data</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>109</volume><spage>156</spage><epage>167</epage><pages>156-167</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2012.03.007</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2012-08, Vol.109, p.156-167
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_1011302385
source RePEc; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Correlation analysis
Longitudinal data
Longitudinal data Penalized estimating equation Robust method Variable selection
Mathematical models
Parameter estimation
Penalized estimating equation
Regression analysis
Robust method
Simulation
Studies
Variable selection
title Variable selection in robust regression models for longitudinal data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20selection%20in%20robust%20regression%20models%20for%20longitudinal%20data&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Fan,%20Yali&rft.date=2012-08-01&rft.volume=109&rft.spage=156&rft.epage=167&rft.pages=156-167&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2012.03.007&rft_dat=%3Cproquest_cross%3E2652903961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011302385&rft_id=info:pmid/&rft_els_id=S0047259X12000760&rfr_iscdi=true