Variable selection in robust regression models for longitudinal data
In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the ora...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2012-08, Vol.109, p.156-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set. |
---|---|
ISSN: | 0047-259X 1095-7243 |
DOI: | 10.1016/j.jmva.2012.03.007 |