Variable selection in robust regression models for longitudinal data

In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the ora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2012-08, Vol.109, p.156-167
Hauptverfasser: Fan, Yali, Qin, Guoyou, Zhu, Zhongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we consider variable selection in robust regression models for longitudinal data. We propose a penalized robust estimating equation to estimate the regression parameters and to select the important covariate variables simultaneously. Under some regularity conditions, we show the oracle properties of the proposed robust variable selection methods. A simulation study shows the robustness of the proposed methods against outliers. Moreover, it is found by the simulation study that incorporating the correlation structure into the procedure of variable selection will lead to better performance than ignoring the correlation structure for longitudinal data. In the end, the proposed methods are illustrated in the analysis of a real data set.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2012.03.007