expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia

Pancreatic cancer is an almost uniformly lethal disease, characterized by late diagnosis, early metastasis, resistance to chemotherapy, and early mutation of the Kras oncogene. Here we show that the receptor for advanced glycation endproducts (RAGE) is required for the activation of interleukin 6 (I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (18), p.7031-7036
Hauptverfasser: Kang, Rui, Loux, Tara, Tang, Daolin, Schapiro, Nicole E, Vernon, Philip, Livesey, Kristen M, Krasinskas, Alyssa, Lotze, Michael T, Zeh, Herbert J. III
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pancreatic cancer is an almost uniformly lethal disease, characterized by late diagnosis, early metastasis, resistance to chemotherapy, and early mutation of the Kras oncogene. Here we show that the receptor for advanced glycation endproducts (RAGE) is required for the activation of interleukin 6 (IL-6)–mediated mitochondrial signal transducers and activators of transcription 3 (STAT3) signaling in pancreatic carcinogenesis. RAGE expression correlates with elevated levels of autophagy in pancreatic cancer in vivo and in vitro, and this heightened state of autophagy is required for IL-6–induced STAT3 activation. To further explore the intersection of RAGE, autophagy, and pancreatic carcinogenesis, we created a transgenic murine model, backcrossing RAGE-null mice to a spontaneous mouse model of pancreatic cancer, Pdx1-Cre:KrasG12D/+ (KC). Targeted ablation of Rage in KC mice delayed neoplasia development, decreased levels of autophagy, and inhibited mitochondrial STAT3 activity and subsequent ATP production. Our results suggest a critical role for RAGE expression in the earliest stages of pancreatic carcinogenesis, potentially acting as the "autophagic switch," regulating mitochondrial STAT3 signaling.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1113865109