Evaluation of Biodiesel Derived from Camelina sativa Oil

Biodiesel derived from camelina as well as other feedstocks including palm, mustard, coconut, sunflower, soybean and canola were prepared via the conventional base-catalyzed transesterification with methanol. Fatty acid profiles and the fuel properties of biodiesel from different vegetable oils were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2012-05, Vol.89 (5), p.917-923
Hauptverfasser: Soriano, Nestor U. Jr, Narani, Akash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biodiesel derived from camelina as well as other feedstocks including palm, mustard, coconut, sunflower, soybean and canola were prepared via the conventional base-catalyzed transesterification with methanol. Fatty acid profiles and the fuel properties of biodiesel from different vegetable oils were analyzed and tested in accordance with ASTM D6751. Camelina biodiesel contains 10–12%, 37–40%, and 48–50% saturated, monounsaturated and polyunsaturated components, respectively. Some fuel properties of camelina biodiesel are comparable to that of sunflower biodiesel including kinematic viscosity (40 °C), flash point, cloud point, cold filter plugging point, and oil stability index. However, camelina biodiesel exhibited the poorest oxidative stability, highest distillation temperature and has the highest potential to form coke during combustion, all of which are attributed to the high amounts of n-3-fatty acids in camelina oil. While neat camelina biodiesel may exhibit undesirable fuel properties, it is very comparable with soybean biodiesel at the B20 level.
ISSN:0003-021X
1558-9331
DOI:10.1007/s11746-011-1970-1