SiDMACIB: A Digital Tool for an Automated Structurally Informed Design of Interlocking Masonry Assemblages

This manuscript presents a new computational form-finding tool developed for a structurally informed design of masonry interlocking assemblages. Applying the concave contact model of limit analysis to corrugated joints, a novel static problem with seven options for the distribution of contact points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mousavian, Elham, Casapulla, Claudia
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This manuscript presents a new computational form-finding tool developed for a structurally informed design of masonry interlocking assemblages. Applying the concave contact model of limit analysis to corrugated joints, a novel static problem with seven options for the distribution of contact points on the interlocking joints is presented. To validate the static problem, an experimental investigation and a discrete element-based numerical test are carried out. Using these experimental and numerical tests, the torsion-shear capacity of the cohesive interface connecting a lock to the main body of an interlocking block is calculated and compared to torsion-shear capacities obtained by the seven options of the proposed concave contact model. Implementing the proposed static problem, a flexible computational setup is developed to model and analyze free-form single-layer interlocking assemblages with stacked or running bonds. Reformulating the static problem, a new parameter is introduced to quantify the infeasibility of the interlocking assemblages due to the violation of the sliding constraint. This infeasibility measurement method is finally implemented in a novel shape optimization procedure that minimizes the sliding infeasibility of the assemblage through adjustment of the interlocking joint shapes. The application of this digital tool to analyze and optimize the interlocking assemblages, is presented using some benchmarks. This chapter presents a new computational form-finding tool developed for a structurally informed design of masonry interlocking assemblages. The application of this digital tool to analyze and optimize the interlocking assemblages, is presented using some benchmarks. The chapter details how the SiDMACIB tool has been developed and its subsequent derivations. It presents how this method is updated to analyze the interlocking assemblages with corrugated joints. SiDMACIB first extended the limit analysis to interlocking joints and developed a shape optimization procedure to automatically tune the geometric parameters of the interlocking joints to remove the infeasibility. The chapter demonstrates a novel joint shape adjustment method to remove the infeasibility of an interlocking assemblage. It also presents the torsion-shear capacity of the cohesive contact between the lock and main body of the block for different eccentricities, using the different numerical and experimental models.
DOI:10.1201/9781003325246-15