The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions

This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Quiñones, Eduardo, Perales, Jesus, Ejarque, Jorge, Badouh, Asaf, Marco, Santiago, Auzanneau, Fabrice, Galea, François, González, David, Hervás, José Ramón, Silva, Tatiana, Colonnelli, Iacopo, Cantalupo, Barbara, Aldinucci, Marco, Tartaglione, Enzo, Tornero, Rafael, Flich, José, Martínez, Jose Maria, Rodriguez, David, Catalán, Izan, Hernández, Carles
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue
container_start_page 191
container_title
container_volume 1
creator Quiñones, Eduardo
Perales, Jesus
Ejarque, Jorge
Badouh, Asaf
Marco, Santiago
Auzanneau, Fabrice
Galea, François
González, David
Hervás, José Ramón
Silva, Tatiana
Colonnelli, Iacopo
Cantalupo, Barbara
Aldinucci, Marco
Tartaglione, Enzo
Tornero, Rafael
Flich, José
Martínez, Jose Maria
Rodriguez, David
Catalán, Izan
Hernández, Carles
description This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.
doi_str_mv 10.1201/9781003176664-10
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6839882_173_220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6839882_173_220</sourcerecordid><originalsourceid>FETCH-LOGICAL-i180t-584382aea806bb7e2a5f44cde79b21c22c1f9ce175e0000280bc169a65fa0e0c3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhldEUWvvHusPiM7sVzZHqR8pFPRQwduy2U5oMCZxd6v4702oF0_DM_A-zLyMXSHcIAe8LXKDAAJzrbXMEI7YxcggjcL87XgCwQEKI9XpCLxAgZJrdcbmMTYVKCHAoFbn7Hqzo8U90VCSa9NuUb4sF6uuDi6msPdpH-iSndSujTT_mzP2-viwWZbZ-vlptbxbZw0aSJkyUhjuyBnQVZUTd6qW0m8pLyqOnnOPdeEJc0XjocANVB514bSqHRB4MWPy4B1C_7mnmCxVff_uqUvBtX7nhkQhWm1EYQy3mAvLOYyx8hBruroPH-67D-3WJvfT9mF8o_NNnDTRItipOvuvumn7NWqbvuPiF3Z0YS0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6839882_173_220</pqid></control><display><type>book_chapter</type><title>The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Quiñones, Eduardo ; Perales, Jesus ; Ejarque, Jorge ; Badouh, Asaf ; Marco, Santiago ; Auzanneau, Fabrice ; Galea, François ; González, David ; Hervás, José Ramón ; Silva, Tatiana ; Colonnelli, Iacopo ; Cantalupo, Barbara ; Aldinucci, Marco ; Tartaglione, Enzo ; Tornero, Rafael ; Flich, José ; Martínez, Jose Maria ; Rodriguez, David ; Catalán, Izan ; Hernández, Carles</creator><contributor>Terzo, Olivier ; Martinovič, Jan</contributor><creatorcontrib>Quiñones, Eduardo ; Perales, Jesus ; Ejarque, Jorge ; Badouh, Asaf ; Marco, Santiago ; Auzanneau, Fabrice ; Galea, François ; González, David ; Hervás, José Ramón ; Silva, Tatiana ; Colonnelli, Iacopo ; Cantalupo, Barbara ; Aldinucci, Marco ; Tartaglione, Enzo ; Tornero, Rafael ; Flich, José ; Martínez, Jose Maria ; Rodriguez, David ; Catalán, Izan ; Hernández, Carles ; Terzo, Olivier ; Martinovič, Jan</creatorcontrib><description>This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.</description><edition>1</edition><identifier>ISBN: 1032009845</identifier><identifier>ISBN: 9781032009841</identifier><identifier>ISBN: 1032009918</identifier><identifier>ISBN: 9781032009919</identifier><identifier>EISBN: 100048517X</identifier><identifier>EISBN: 9781000485172</identifier><identifier>EISBN: 9781003176664</identifier><identifier>EISBN: 1000485110</identifier><identifier>EISBN: 9781000485110</identifier><identifier>EISBN: 1003176666</identifier><identifier>DOI: 10.1201/9781003176664-10</identifier><identifier>OCLC: 1291314265</identifier><identifier>LCCallNum: QA76 .H544 2022</identifier><language>eng</language><publisher>United Kingdom: Routledge</publisher><ispartof>HPC, Big Data, and AI Convergence Towards Exascale, 2022, Vol.1, p.191-216</ispartof><rights>2022 selection and editorial matter, Olivier Terzo and Jan Martinovicˇ; individual chapters, the contributors</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7951-3914 ; 0000-0001-5393-3195 ; 0000-0003-4274-8298 ; 0000-0002-5465-964X ; 0000-0001-7575-3902 ; 0000-0001-8788-0829 ; 0000-0001-9290-2017 ; 0000-0003-4725-5097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6839882-l.jpg</thumbnail><link.rule.ids>775,776,780,789,27902</link.rule.ids></links><search><contributor>Terzo, Olivier</contributor><contributor>Martinovič, Jan</contributor><creatorcontrib>Quiñones, Eduardo</creatorcontrib><creatorcontrib>Perales, Jesus</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badouh, Asaf</creatorcontrib><creatorcontrib>Marco, Santiago</creatorcontrib><creatorcontrib>Auzanneau, Fabrice</creatorcontrib><creatorcontrib>Galea, François</creatorcontrib><creatorcontrib>González, David</creatorcontrib><creatorcontrib>Hervás, José Ramón</creatorcontrib><creatorcontrib>Silva, Tatiana</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Cantalupo, Barbara</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Tartaglione, Enzo</creatorcontrib><creatorcontrib>Tornero, Rafael</creatorcontrib><creatorcontrib>Flich, José</creatorcontrib><creatorcontrib>Martínez, Jose Maria</creatorcontrib><creatorcontrib>Rodriguez, David</creatorcontrib><creatorcontrib>Catalán, Izan</creatorcontrib><creatorcontrib>Hernández, Carles</creatorcontrib><title>The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions</title><title>HPC, Big Data, and AI Convergence Towards Exascale</title><description>This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.</description><isbn>1032009845</isbn><isbn>9781032009841</isbn><isbn>1032009918</isbn><isbn>9781032009919</isbn><isbn>100048517X</isbn><isbn>9781000485172</isbn><isbn>9781003176664</isbn><isbn>1000485110</isbn><isbn>9781000485110</isbn><isbn>1003176666</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2022</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkE1Lw0AQhldEUWvvHusPiM7sVzZHqR8pFPRQwduy2U5oMCZxd6v4702oF0_DM_A-zLyMXSHcIAe8LXKDAAJzrbXMEI7YxcggjcL87XgCwQEKI9XpCLxAgZJrdcbmMTYVKCHAoFbn7Hqzo8U90VCSa9NuUb4sF6uuDi6msPdpH-iSndSujTT_mzP2-viwWZbZ-vlptbxbZw0aSJkyUhjuyBnQVZUTd6qW0m8pLyqOnnOPdeEJc0XjocANVB514bSqHRB4MWPy4B1C_7mnmCxVff_uqUvBtX7nhkQhWm1EYQy3mAvLOYyx8hBruroPH-67D-3WJvfT9mF8o_NNnDTRItipOvuvumn7NWqbvuPiF3Z0YS0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Quiñones, Eduardo</creator><creator>Perales, Jesus</creator><creator>Ejarque, Jorge</creator><creator>Badouh, Asaf</creator><creator>Marco, Santiago</creator><creator>Auzanneau, Fabrice</creator><creator>Galea, François</creator><creator>González, David</creator><creator>Hervás, José Ramón</creator><creator>Silva, Tatiana</creator><creator>Colonnelli, Iacopo</creator><creator>Cantalupo, Barbara</creator><creator>Aldinucci, Marco</creator><creator>Tartaglione, Enzo</creator><creator>Tornero, Rafael</creator><creator>Flich, José</creator><creator>Martínez, Jose Maria</creator><creator>Rodriguez, David</creator><creator>Catalán, Izan</creator><creator>Hernández, Carles</creator><general>Routledge</general><general>Taylor &amp; Francis Group</general><scope>FFUUA</scope><orcidid>https://orcid.org/0000-0001-7951-3914</orcidid><orcidid>https://orcid.org/0000-0001-5393-3195</orcidid><orcidid>https://orcid.org/0000-0003-4274-8298</orcidid><orcidid>https://orcid.org/0000-0002-5465-964X</orcidid><orcidid>https://orcid.org/0000-0001-7575-3902</orcidid><orcidid>https://orcid.org/0000-0001-8788-0829</orcidid><orcidid>https://orcid.org/0000-0001-9290-2017</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid></search><sort><creationdate>2022</creationdate><title>The DeepHealth HPC Infrastructure</title><author>Quiñones, Eduardo ; Perales, Jesus ; Ejarque, Jorge ; Badouh, Asaf ; Marco, Santiago ; Auzanneau, Fabrice ; Galea, François ; González, David ; Hervás, José Ramón ; Silva, Tatiana ; Colonnelli, Iacopo ; Cantalupo, Barbara ; Aldinucci, Marco ; Tartaglione, Enzo ; Tornero, Rafael ; Flich, José ; Martínez, Jose Maria ; Rodriguez, David ; Catalán, Izan ; Hernández, Carles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i180t-584382aea806bb7e2a5f44cde79b21c22c1f9ce175e0000280bc169a65fa0e0c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Quiñones, Eduardo</creatorcontrib><creatorcontrib>Perales, Jesus</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badouh, Asaf</creatorcontrib><creatorcontrib>Marco, Santiago</creatorcontrib><creatorcontrib>Auzanneau, Fabrice</creatorcontrib><creatorcontrib>Galea, François</creatorcontrib><creatorcontrib>González, David</creatorcontrib><creatorcontrib>Hervás, José Ramón</creatorcontrib><creatorcontrib>Silva, Tatiana</creatorcontrib><creatorcontrib>Colonnelli, Iacopo</creatorcontrib><creatorcontrib>Cantalupo, Barbara</creatorcontrib><creatorcontrib>Aldinucci, Marco</creatorcontrib><creatorcontrib>Tartaglione, Enzo</creatorcontrib><creatorcontrib>Tornero, Rafael</creatorcontrib><creatorcontrib>Flich, José</creatorcontrib><creatorcontrib>Martínez, Jose Maria</creatorcontrib><creatorcontrib>Rodriguez, David</creatorcontrib><creatorcontrib>Catalán, Izan</creatorcontrib><creatorcontrib>Hernández, Carles</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quiñones, Eduardo</au><au>Perales, Jesus</au><au>Ejarque, Jorge</au><au>Badouh, Asaf</au><au>Marco, Santiago</au><au>Auzanneau, Fabrice</au><au>Galea, François</au><au>González, David</au><au>Hervás, José Ramón</au><au>Silva, Tatiana</au><au>Colonnelli, Iacopo</au><au>Cantalupo, Barbara</au><au>Aldinucci, Marco</au><au>Tartaglione, Enzo</au><au>Tornero, Rafael</au><au>Flich, José</au><au>Martínez, Jose Maria</au><au>Rodriguez, David</au><au>Catalán, Izan</au><au>Hernández, Carles</au><au>Terzo, Olivier</au><au>Martinovič, Jan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions</atitle><btitle>HPC, Big Data, and AI Convergence Towards Exascale</btitle><date>2022</date><risdate>2022</risdate><volume>1</volume><spage>191</spage><epage>216</epage><pages>191-216</pages><isbn>1032009845</isbn><isbn>9781032009841</isbn><isbn>1032009918</isbn><isbn>9781032009919</isbn><eisbn>100048517X</eisbn><eisbn>9781000485172</eisbn><eisbn>9781003176664</eisbn><eisbn>1000485110</eisbn><eisbn>9781000485110</eisbn><eisbn>1003176666</eisbn><abstract>This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.</abstract><cop>United Kingdom</cop><pub>Routledge</pub><doi>10.1201/9781003176664-10</doi><oclcid>1291314265</oclcid><tpages>26</tpages><edition>1</edition><orcidid>https://orcid.org/0000-0001-7951-3914</orcidid><orcidid>https://orcid.org/0000-0001-5393-3195</orcidid><orcidid>https://orcid.org/0000-0003-4274-8298</orcidid><orcidid>https://orcid.org/0000-0002-5465-964X</orcidid><orcidid>https://orcid.org/0000-0001-7575-3902</orcidid><orcidid>https://orcid.org/0000-0001-8788-0829</orcidid><orcidid>https://orcid.org/0000-0001-9290-2017</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid></addata></record>
fulltext fulltext
identifier ISBN: 1032009845
ispartof HPC, Big Data, and AI Convergence Towards Exascale, 2022, Vol.1, p.191-216
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6839882_173_220
source O'Reilly Online Learning: Academic/Public Library Edition
title The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20DeepHealth%20HPC%20Infrastructure:%20Leveraging%20Heterogenous%20HPC%20and%20Cloud-Computing%20Infrastructures%20for%20IA-Based%20Medical%20Solutions&rft.btitle=HPC,%20Big%20Data,%20and%20AI%20Convergence%20Towards%20Exascale&rft.au=Qui%C3%B1ones,%20Eduardo&rft.date=2022&rft.volume=1&rft.spage=191&rft.epage=216&rft.pages=191-216&rft.isbn=1032009845&rft.isbn_list=9781032009841&rft.isbn_list=1032009918&rft.isbn_list=9781032009919&rft_id=info:doi/10.1201/9781003176664-10&rft_dat=%3Cproquest_infor%3EEBC6839882_173_220%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=100048517X&rft.eisbn_list=9781000485172&rft.eisbn_list=9781003176664&rft.eisbn_list=1000485110&rft.eisbn_list=9781000485110&rft.eisbn_list=1003176666&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6839882_173_220&rft_id=info:pmid/&rfr_iscdi=true