The DeepHealth HPC Infrastructure: Leveraging Heterogenous HPC and Cloud-Computing Infrastructures for IA-Based Medical Solutions

This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Quiñones, Eduardo, Perales, Jesus, Ejarque, Jorge, Badouh, Asaf, Marco, Santiago, Auzanneau, Fabrice, Galea, François, González, David, Hervás, José Ramón, Silva, Tatiana, Colonnelli, Iacopo, Cantalupo, Barbara, Aldinucci, Marco, Tartaglione, Enzo, Tornero, Rafael, Flich, José, Martínez, Jose Maria, Rodriguez, David, Catalán, Izan, Hernández, Carles
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This chapter presents the DeepHealth HPC toolkit for an efficient execution of deep learning (DL) medical application into HPC and cloud-computing infrastructures, featuring many-core, GPU, and FPGA acceleration devices. The toolkit offers to the European Computer Vision Library and the European Distributed Deep Learning Library (EDDL), developed in the DeepHealth project as well, the mechanisms to distribute and parallelize DL operations on HPC and cloud infrastructures in a fully transparent way. The toolkit implements workflow managers used to orchestrate HPC workloads for an efficient parallelization of EDDL training operations on HPC and cloud infrastructures, and includes the parallel programming models for an efficient execution EDDL inference and training operations on many-core, GPUs and FPGAs acceleration devices.
DOI:10.1201/9781003176664-10