Angular Momenta

Q36(1) The spherical harmonics Y 1,1(θ, φ), Y 1,0(θ, φ), Y 1,−1(θ, φ) are given by Eqs. (16.65) to (16.67). In Cartesian coordinates, these functions are given by 1 Y 1 , − 1 ( x , y , z ) = 3 8 π x − i y r , Y 1 , 0 ( x , y , z ) = 3 4 π z r , Y 1 , 1 ( x , y , z ) = − 3 8 π x + i y r . (a) Using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wan, K. Kong
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 201
container_title
container_volume
creator Wan, K. Kong
description Q36(1) The spherical harmonics Y 1,1(θ, φ), Y 1,0(θ, φ), Y 1,−1(θ, φ) are given by Eqs. (16.65) to (16.67). In Cartesian coordinates, these functions are given by 1 Y 1 , − 1 ( x , y , z ) = 3 8 π x − i y r , Y 1 , 0 ( x , y , z ) = 3 4 π z r , Y 1 , 1 ( x , y , z ) = − 3 8 π x + i y r . (a) Using the expression in Cartesian coordinates for the quantised orbital angular momentum operator L ^ c z in Eq. (27.86), verify by explicit calculations that Y 1,1(x, y, z), Y 1,0(x, y, z)and Y 1,-1(x, y, z) are the eigenfunctions of L ^ c z corresponding to eigenvalues ħ, 0 and –ħ. (b) Consider the following coordinate transformations: x → z ′ , y → x ′ , z → y ′ . (1) 202Show that the component of the orbital angular momentum operator along the z′-direction is the same as that along the x-direction, i.e., show that L ^ c z ′ = L ^ c z . (2) Show that the simultaneous eigenfunctions of L ^ c 2 and L ^ c x corresponding to eigenvalues of L ^ c 2 equal to 2ħ 2are given in Cartesian coordinates by X 1 , − 1 ( x , y , z ) = 3 8 π y − i z r , X 1 , 0 ( x , y , z ) = 3 4 π x r , X 1 , 1 ( x , y , z ) = − 3 8 π y + i z r . SQ36(1)(a) In Cartesian coordinates we have 2 : p ^ x Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ x x − i y r = − i ℏ 3 8 π ( 1 r − x − i y r 2 ∂ ∂ x r ) = − i ℏ 3 8 π ( 1 r − x − i y r 2 x r ) = − i ℏ 3 8 π 1 r 3 ( r 2 − x 2 + i x y ) . p ^ y Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ y x − i y r = − i ℏ 3 8 π ( − i r − x − i y r 2 ∂ ∂ y r ) = − i ℏ 3 8 π ( − i r − x − i y r 2 y r ) = − i ℏ 3 8 π 1 r 3 ( − i r 2 − x y + i y 2 ) . L ^ z Y → 1 , − 1 : = ( x p ^ y − y p ^ x ) Y 1 , − 1 = − i ℏ 3 8 π 1 r 3 ( ( − i x r 2 − x 2 y + i x y 2 ) − ( y r 2 − y x 2 + i x y 2 ) ) = − i ℏ 3 8 π 1 r 3 ( − i x r 2 − y r 2 ) = − ℏ 3 8 π 1 r { x − i y } = − ℏ Y 1 , − 1 . 203Next we have p ^ x Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ x z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ x r ) = i ℏ 3 4 π z x r 3 . p ^ y Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ y z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ y r ) = i ℏ 3 4 π z y r 3 . L ^ z Y → 1 , 0 : = ( x p ^ y − y p ^ x ) Y 1 , 0 = x ( i ℏ 3 4 π z y r 3 ) − y ( i ℏ 3 4 π z x r 3 ) = 0. Finally we have p ^ x Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ x x + i y r = − i ℏ 3 8 π ( 1 r − x + i y r 2 ∂ ∂ x r ) = i ℏ 3 8 π ( 1 r − x + i y r 2 x r ) = i ℏ 3 8 π 1 r 3 ( r 2 − x 2 − i x y ) , p ^ y Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ y x + i y r = i ℏ 3 8 π ( i r − x + i y r 2 ∂ ∂ y r ) = i ℏ 3 8 π ( i r − x + i y r 2 y r ) = i ℏ 3 8 π 1 r 3 ( i r 2 − x y − i y 2 ) , L ^ z Y → 1 , 1 : = ( x p ^ y − y p ^ x ) Y 1 , 1 = i ℏ 3 8 π
doi_str_mv 10.1201/9780429296475-36
format Book Chapter
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_ebookcentralchapters_6320223_43_214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6320223_43_214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1094-9cc9fa2dddc04a250877a294638d6536fd99312b453a49138476e61547ef44013</originalsourceid><addsrcrecordid>eNpVkMtOAzEMRYMQCCgVW5b8wEAcOw8vqwooEogNrKN0HjAwnZRkCuLvmVI2eGPZ8j26vkKcg7wEJeGKrZOkWLEhqws0e2I6rkCOpZQ2bv93ZgfkpLQKD8UJAGsix9oeiWnOb9tTZ9g4PBZns_5l04V08RBXdT-EU3HQhC7X078-Ec8310_zRXH_eHs3n90XLUimgsuSm6CqqiolBaWlszYoJoOuMhpNUzEjqCVpDMSAjqypDWiydUMkAScCd9x1ih-bOg--Xsb4Xo4eUujK17Ae6pS9QTW-hZ7QK6BRtdip2r6JaRW-YuoqP4TvLqYmhb5s85aSPUi_Tcv_S8uj8Z8jtY29wh9sNlpn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6320223_43_214</pqid></control><display><type>book_chapter</type><title>Angular Momenta</title><source>Ebook Central Perpetual and DDA</source><creator>Wan, K. Kong</creator><contributor>Wan, K. Kong</contributor><creatorcontrib>Wan, K. Kong ; Wan, K. Kong</creatorcontrib><description>Q36(1) The spherical harmonics Y 1,1(θ, φ), Y 1,0(θ, φ), Y 1,−1(θ, φ) are given by Eqs. (16.65) to (16.67). In Cartesian coordinates, these functions are given by 1 Y 1 , − 1 ( x , y , z ) = 3 8 π x − i y r , Y 1 , 0 ( x , y , z ) = 3 4 π z r , Y 1 , 1 ( x , y , z ) = − 3 8 π x + i y r . (a) Using the expression in Cartesian coordinates for the quantised orbital angular momentum operator L ^ c z in Eq. (27.86), verify by explicit calculations that Y 1,1(x, y, z), Y 1,0(x, y, z)and Y 1,-1(x, y, z) are the eigenfunctions of L ^ c z corresponding to eigenvalues ħ, 0 and –ħ. (b) Consider the following coordinate transformations: x → z ′ , y → x ′ , z → y ′ . (1) 202Show that the component of the orbital angular momentum operator along the z′-direction is the same as that along the x-direction, i.e., show that L ^ c z ′ = L ^ c z . (2) Show that the simultaneous eigenfunctions of L ^ c 2 and L ^ c x corresponding to eigenvalues of L ^ c 2 equal to 2ħ 2are given in Cartesian coordinates by X 1 , − 1 ( x , y , z ) = 3 8 π y − i z r , X 1 , 0 ( x , y , z ) = 3 4 π x r , X 1 , 1 ( x , y , z ) = − 3 8 π y + i z r . SQ36(1)(a) In Cartesian coordinates we have 2 : p ^ x Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ x x − i y r = − i ℏ 3 8 π ( 1 r − x − i y r 2 ∂ ∂ x r ) = − i ℏ 3 8 π ( 1 r − x − i y r 2 x r ) = − i ℏ 3 8 π 1 r 3 ( r 2 − x 2 + i x y ) . p ^ y Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ y x − i y r = − i ℏ 3 8 π ( − i r − x − i y r 2 ∂ ∂ y r ) = − i ℏ 3 8 π ( − i r − x − i y r 2 y r ) = − i ℏ 3 8 π 1 r 3 ( − i r 2 − x y + i y 2 ) . L ^ z Y → 1 , − 1 : = ( x p ^ y − y p ^ x ) Y 1 , − 1 = − i ℏ 3 8 π 1 r 3 ( ( − i x r 2 − x 2 y + i x y 2 ) − ( y r 2 − y x 2 + i x y 2 ) ) = − i ℏ 3 8 π 1 r 3 ( − i x r 2 − y r 2 ) = − ℏ 3 8 π 1 r { x − i y } = − ℏ Y 1 , − 1 . 203Next we have p ^ x Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ x z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ x r ) = i ℏ 3 4 π z x r 3 . p ^ y Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ y z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ y r ) = i ℏ 3 4 π z y r 3 . L ^ z Y → 1 , 0 : = ( x p ^ y − y p ^ x ) Y 1 , 0 = x ( i ℏ 3 4 π z y r 3 ) − y ( i ℏ 3 4 π z x r 3 ) = 0. Finally we have p ^ x Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ x x + i y r = − i ℏ 3 8 π ( 1 r − x + i y r 2 ∂ ∂ x r ) = i ℏ 3 8 π ( 1 r − x + i y r 2 x r ) = i ℏ 3 8 π 1 r 3 ( r 2 − x 2 − i x y ) , p ^ y Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ y x + i y r = i ℏ 3 8 π ( i r − x + i y r 2 ∂ ∂ y r ) = i ℏ 3 8 π ( i r − x + i y r 2 y r ) = i ℏ 3 8 π 1 r 3 ( i r 2 − x y − i y 2 ) , L ^ z Y → 1 , 1 : = ( x p ^ y − y p ^ x ) Y 1 , 1 = i ℏ 3 8 π 1 r 3 { ( i x r 2 − x 2 y − i x y 2 ) = − ( y r 2 − y x 2 − i x y 2 ) } = i ℏ 3 8 π 1 r 3 { i x r 2 − y r 2 } = − ℏ 3 8 π 1 r ( x + i y ) = ℏ Y 1 , 1 . 204 SQ36(1)(b) (1) Consider a transformation from the original coordinate system (x, y, z) to a new coordinate system (x′, y′, z′): x → z ′ , y → x ′ , z → y ′ . We can see that the new z′-axis coincides with the original x-axis, and that r = x 2 + y 2 + z 2 = x ′ 2 + y ′ 2 + z ′ 2 = r ′ . Physically we expect the angular momentum about the x-axis to be the same as the angular momentum about the z′-axis. We can confirm this mathematically by showing that L ^ x = y p ^ z − z p ^ y = − i ℏ ( y ∂ ∂ z − z ∂ ∂ y ) is equal to L ^ z ′ = x ′ p ^ y ′ − y ′ p ^ x ′ = − i ℏ ( x ′ ∂ ∂ y ′ − y ′ ∂ ∂ x ′ ) . This is obvious since x′ = y, y′ = z. It follows that the eigenfunctions and eigenvalues of L ^ x are the same in terms of the dashed coordinates as that of L ^ z ′ . (2) We know the eigenfunctions Y ℓ , m ℓ ′ ( x ′ , y ′ , z ′ ) and eigenvalues of L ^ z ′ in the transformed coordinates (x′, y′, z′) as they are of the same form as those of the eigenfunctions and eigenvalues of L ^ z in the original coordinates, i.e., we have Y 1 , − 1 ′ ( x ′ , y ′ , z ′ ) = 3 8 π x ′ − i y ′ r ′ ,   Y 1 , 0 ′ ( x ′ , y ′ , z ′ ) = 3 4 π z ′ r ′ Y 1 , 1 ′ ( x ′ , y ′ , z ′ ) = − 3 8 π x ′ + i y ′ r ′ . 205Since L ^ z ′ = L ^ x these are also eigenfunctions of L ^ x Written in terms of the original coordinates these functions become Y 1 , − 1 ′ = 3 8 π y − i z r , Y 1 , 0 ′ = 3 4 π x r , Y 1 , 1 ′ = − 3 8 π y + i z r . We can conclude that the required eigenfunctions L ^ x denoted more conveniently by X 1,1, X 1,0, X 1,−1 are X 1 , − 1 = 3 8 π y − i z r , X 1 , 0 = 3 4 π x r , X 1 , 1 = − 3 8 π y + i z r . Q36(2) Suppose L ^ c 2 and L ^ c z are measured giving the eigenvalues 2ħ 2 and –ħ, respectively. A measurement of L ^ c x is then made. What are the possible results of the measurement of L ^ c x ? Find the probability of each of these possible results.</description><edition>1</edition><identifier>ISBN: 9789814800723</identifier><identifier>ISBN: 9814800724</identifier><identifier>EISBN: 9781000022568</identifier><identifier>EISBN: 1000022102</identifier><identifier>EISBN: 9781000022339</identifier><identifier>EISBN: 1000022331</identifier><identifier>EISBN: 1000022560</identifier><identifier>EISBN: 0429296479</identifier><identifier>EISBN: 9780429296475</identifier><identifier>EISBN: 9781000022100</identifier><identifier>DOI: 10.1201/9780429296475-36</identifier><identifier>OCLC: 1195448957</identifier><identifier>LCCallNum: QA76.3 .K664 2021</identifier><language>eng</language><publisher>United Kingdom: Jenny Stanford Publishing</publisher><ispartof>Quantum Mechanics, 2021, p.201-223</ispartof><rights>Copyright © 2021 Jenny Stanford Publishing Pte. Ltd.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6320223-l.jpg</thumbnail><linktopdf>$$Uhttps://ebookcentral.proquest.com/lib/munchentech/reader.action?docID=6320223_43_214&amp;ppg=214$$EPDF$$P50$$Gproquest$$H</linktopdf><link.rule.ids>779,780,784,793,27925,79398</link.rule.ids></links><search><contributor>Wan, K. Kong</contributor><creatorcontrib>Wan, K. Kong</creatorcontrib><title>Angular Momenta</title><title>Quantum Mechanics</title><description>Q36(1) The spherical harmonics Y 1,1(θ, φ), Y 1,0(θ, φ), Y 1,−1(θ, φ) are given by Eqs. (16.65) to (16.67). In Cartesian coordinates, these functions are given by 1 Y 1 , − 1 ( x , y , z ) = 3 8 π x − i y r , Y 1 , 0 ( x , y , z ) = 3 4 π z r , Y 1 , 1 ( x , y , z ) = − 3 8 π x + i y r . (a) Using the expression in Cartesian coordinates for the quantised orbital angular momentum operator L ^ c z in Eq. (27.86), verify by explicit calculations that Y 1,1(x, y, z), Y 1,0(x, y, z)and Y 1,-1(x, y, z) are the eigenfunctions of L ^ c z corresponding to eigenvalues ħ, 0 and –ħ. (b) Consider the following coordinate transformations: x → z ′ , y → x ′ , z → y ′ . (1) 202Show that the component of the orbital angular momentum operator along the z′-direction is the same as that along the x-direction, i.e., show that L ^ c z ′ = L ^ c z . (2) Show that the simultaneous eigenfunctions of L ^ c 2 and L ^ c x corresponding to eigenvalues of L ^ c 2 equal to 2ħ 2are given in Cartesian coordinates by X 1 , − 1 ( x , y , z ) = 3 8 π y − i z r , X 1 , 0 ( x , y , z ) = 3 4 π x r , X 1 , 1 ( x , y , z ) = − 3 8 π y + i z r . SQ36(1)(a) In Cartesian coordinates we have 2 : p ^ x Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ x x − i y r = − i ℏ 3 8 π ( 1 r − x − i y r 2 ∂ ∂ x r ) = − i ℏ 3 8 π ( 1 r − x − i y r 2 x r ) = − i ℏ 3 8 π 1 r 3 ( r 2 − x 2 + i x y ) . p ^ y Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ y x − i y r = − i ℏ 3 8 π ( − i r − x − i y r 2 ∂ ∂ y r ) = − i ℏ 3 8 π ( − i r − x − i y r 2 y r ) = − i ℏ 3 8 π 1 r 3 ( − i r 2 − x y + i y 2 ) . L ^ z Y → 1 , − 1 : = ( x p ^ y − y p ^ x ) Y 1 , − 1 = − i ℏ 3 8 π 1 r 3 ( ( − i x r 2 − x 2 y + i x y 2 ) − ( y r 2 − y x 2 + i x y 2 ) ) = − i ℏ 3 8 π 1 r 3 ( − i x r 2 − y r 2 ) = − ℏ 3 8 π 1 r { x − i y } = − ℏ Y 1 , − 1 . 203Next we have p ^ x Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ x z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ x r ) = i ℏ 3 4 π z x r 3 . p ^ y Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ y z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ y r ) = i ℏ 3 4 π z y r 3 . L ^ z Y → 1 , 0 : = ( x p ^ y − y p ^ x ) Y 1 , 0 = x ( i ℏ 3 4 π z y r 3 ) − y ( i ℏ 3 4 π z x r 3 ) = 0. Finally we have p ^ x Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ x x + i y r = − i ℏ 3 8 π ( 1 r − x + i y r 2 ∂ ∂ x r ) = i ℏ 3 8 π ( 1 r − x + i y r 2 x r ) = i ℏ 3 8 π 1 r 3 ( r 2 − x 2 − i x y ) , p ^ y Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ y x + i y r = i ℏ 3 8 π ( i r − x + i y r 2 ∂ ∂ y r ) = i ℏ 3 8 π ( i r − x + i y r 2 y r ) = i ℏ 3 8 π 1 r 3 ( i r 2 − x y − i y 2 ) , L ^ z Y → 1 , 1 : = ( x p ^ y − y p ^ x ) Y 1 , 1 = i ℏ 3 8 π 1 r 3 { ( i x r 2 − x 2 y − i x y 2 ) = − ( y r 2 − y x 2 − i x y 2 ) } = i ℏ 3 8 π 1 r 3 { i x r 2 − y r 2 } = − ℏ 3 8 π 1 r ( x + i y ) = ℏ Y 1 , 1 . 204 SQ36(1)(b) (1) Consider a transformation from the original coordinate system (x, y, z) to a new coordinate system (x′, y′, z′): x → z ′ , y → x ′ , z → y ′ . We can see that the new z′-axis coincides with the original x-axis, and that r = x 2 + y 2 + z 2 = x ′ 2 + y ′ 2 + z ′ 2 = r ′ . Physically we expect the angular momentum about the x-axis to be the same as the angular momentum about the z′-axis. We can confirm this mathematically by showing that L ^ x = y p ^ z − z p ^ y = − i ℏ ( y ∂ ∂ z − z ∂ ∂ y ) is equal to L ^ z ′ = x ′ p ^ y ′ − y ′ p ^ x ′ = − i ℏ ( x ′ ∂ ∂ y ′ − y ′ ∂ ∂ x ′ ) . This is obvious since x′ = y, y′ = z. It follows that the eigenfunctions and eigenvalues of L ^ x are the same in terms of the dashed coordinates as that of L ^ z ′ . (2) We know the eigenfunctions Y ℓ , m ℓ ′ ( x ′ , y ′ , z ′ ) and eigenvalues of L ^ z ′ in the transformed coordinates (x′, y′, z′) as they are of the same form as those of the eigenfunctions and eigenvalues of L ^ z in the original coordinates, i.e., we have Y 1 , − 1 ′ ( x ′ , y ′ , z ′ ) = 3 8 π x ′ − i y ′ r ′ ,   Y 1 , 0 ′ ( x ′ , y ′ , z ′ ) = 3 4 π z ′ r ′ Y 1 , 1 ′ ( x ′ , y ′ , z ′ ) = − 3 8 π x ′ + i y ′ r ′ . 205Since L ^ z ′ = L ^ x these are also eigenfunctions of L ^ x Written in terms of the original coordinates these functions become Y 1 , − 1 ′ = 3 8 π y − i z r , Y 1 , 0 ′ = 3 4 π x r , Y 1 , 1 ′ = − 3 8 π y + i z r . We can conclude that the required eigenfunctions L ^ x denoted more conveniently by X 1,1, X 1,0, X 1,−1 are X 1 , − 1 = 3 8 π y − i z r , X 1 , 0 = 3 4 π x r , X 1 , 1 = − 3 8 π y + i z r . Q36(2) Suppose L ^ c 2 and L ^ c z are measured giving the eigenvalues 2ħ 2 and –ħ, respectively. A measurement of L ^ c x is then made. What are the possible results of the measurement of L ^ c x ? Find the probability of each of these possible results.</description><isbn>9789814800723</isbn><isbn>9814800724</isbn><isbn>9781000022568</isbn><isbn>1000022102</isbn><isbn>9781000022339</isbn><isbn>1000022331</isbn><isbn>1000022560</isbn><isbn>0429296479</isbn><isbn>9780429296475</isbn><isbn>9781000022100</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2021</creationdate><recordtype>book_chapter</recordtype><recordid>eNpVkMtOAzEMRYMQCCgVW5b8wEAcOw8vqwooEogNrKN0HjAwnZRkCuLvmVI2eGPZ8j26vkKcg7wEJeGKrZOkWLEhqws0e2I6rkCOpZQ2bv93ZgfkpLQKD8UJAGsix9oeiWnOb9tTZ9g4PBZns_5l04V08RBXdT-EU3HQhC7X078-Ec8310_zRXH_eHs3n90XLUimgsuSm6CqqiolBaWlszYoJoOuMhpNUzEjqCVpDMSAjqypDWiydUMkAScCd9x1ih-bOg--Xsb4Xo4eUujK17Ae6pS9QTW-hZ7QK6BRtdip2r6JaRW-YuoqP4TvLqYmhb5s85aSPUi_Tcv_S8uj8Z8jtY29wh9sNlpn</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wan, K. Kong</creator><general>Jenny Stanford Publishing</general><scope>FFUUA</scope></search><sort><creationdate>2021</creationdate><title>Angular Momenta</title><author>Wan, K. Kong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1094-9cc9fa2dddc04a250877a294638d6536fd99312b453a49138476e61547ef44013</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wan, K. Kong</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, K. Kong</au><au>Wan, K. Kong</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Angular Momenta</atitle><btitle>Quantum Mechanics</btitle><date>2021</date><risdate>2021</risdate><spage>201</spage><epage>223</epage><pages>201-223</pages><isbn>9789814800723</isbn><isbn>9814800724</isbn><eisbn>9781000022568</eisbn><eisbn>1000022102</eisbn><eisbn>9781000022339</eisbn><eisbn>1000022331</eisbn><eisbn>1000022560</eisbn><eisbn>0429296479</eisbn><eisbn>9780429296475</eisbn><eisbn>9781000022100</eisbn><abstract>Q36(1) The spherical harmonics Y 1,1(θ, φ), Y 1,0(θ, φ), Y 1,−1(θ, φ) are given by Eqs. (16.65) to (16.67). In Cartesian coordinates, these functions are given by 1 Y 1 , − 1 ( x , y , z ) = 3 8 π x − i y r , Y 1 , 0 ( x , y , z ) = 3 4 π z r , Y 1 , 1 ( x , y , z ) = − 3 8 π x + i y r . (a) Using the expression in Cartesian coordinates for the quantised orbital angular momentum operator L ^ c z in Eq. (27.86), verify by explicit calculations that Y 1,1(x, y, z), Y 1,0(x, y, z)and Y 1,-1(x, y, z) are the eigenfunctions of L ^ c z corresponding to eigenvalues ħ, 0 and –ħ. (b) Consider the following coordinate transformations: x → z ′ , y → x ′ , z → y ′ . (1) 202Show that the component of the orbital angular momentum operator along the z′-direction is the same as that along the x-direction, i.e., show that L ^ c z ′ = L ^ c z . (2) Show that the simultaneous eigenfunctions of L ^ c 2 and L ^ c x corresponding to eigenvalues of L ^ c 2 equal to 2ħ 2are given in Cartesian coordinates by X 1 , − 1 ( x , y , z ) = 3 8 π y − i z r , X 1 , 0 ( x , y , z ) = 3 4 π x r , X 1 , 1 ( x , y , z ) = − 3 8 π y + i z r . SQ36(1)(a) In Cartesian coordinates we have 2 : p ^ x Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ x x − i y r = − i ℏ 3 8 π ( 1 r − x − i y r 2 ∂ ∂ x r ) = − i ℏ 3 8 π ( 1 r − x − i y r 2 x r ) = − i ℏ 3 8 π 1 r 3 ( r 2 − x 2 + i x y ) . p ^ y Y → 1 , − 1 : = − i ℏ 3 8 π ∂ ∂ y x − i y r = − i ℏ 3 8 π ( − i r − x − i y r 2 ∂ ∂ y r ) = − i ℏ 3 8 π ( − i r − x − i y r 2 y r ) = − i ℏ 3 8 π 1 r 3 ( − i r 2 − x y + i y 2 ) . L ^ z Y → 1 , − 1 : = ( x p ^ y − y p ^ x ) Y 1 , − 1 = − i ℏ 3 8 π 1 r 3 ( ( − i x r 2 − x 2 y + i x y 2 ) − ( y r 2 − y x 2 + i x y 2 ) ) = − i ℏ 3 8 π 1 r 3 ( − i x r 2 − y r 2 ) = − ℏ 3 8 π 1 r { x − i y } = − ℏ Y 1 , − 1 . 203Next we have p ^ x Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ x z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ x r ) = i ℏ 3 4 π z x r 3 . p ^ y Y → 1 , 0 : = − i ℏ 3 4 π ∂ ∂ y z r = − i ℏ 3 4 π ( − z r 2 ∂ ∂ y r ) = i ℏ 3 4 π z y r 3 . L ^ z Y → 1 , 0 : = ( x p ^ y − y p ^ x ) Y 1 , 0 = x ( i ℏ 3 4 π z y r 3 ) − y ( i ℏ 3 4 π z x r 3 ) = 0. Finally we have p ^ x Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ x x + i y r = − i ℏ 3 8 π ( 1 r − x + i y r 2 ∂ ∂ x r ) = i ℏ 3 8 π ( 1 r − x + i y r 2 x r ) = i ℏ 3 8 π 1 r 3 ( r 2 − x 2 − i x y ) , p ^ y Y → 1 , 1 : = i ℏ 3 8 π ∂ ∂ y x + i y r = i ℏ 3 8 π ( i r − x + i y r 2 ∂ ∂ y r ) = i ℏ 3 8 π ( i r − x + i y r 2 y r ) = i ℏ 3 8 π 1 r 3 ( i r 2 − x y − i y 2 ) , L ^ z Y → 1 , 1 : = ( x p ^ y − y p ^ x ) Y 1 , 1 = i ℏ 3 8 π 1 r 3 { ( i x r 2 − x 2 y − i x y 2 ) = − ( y r 2 − y x 2 − i x y 2 ) } = i ℏ 3 8 π 1 r 3 { i x r 2 − y r 2 } = − ℏ 3 8 π 1 r ( x + i y ) = ℏ Y 1 , 1 . 204 SQ36(1)(b) (1) Consider a transformation from the original coordinate system (x, y, z) to a new coordinate system (x′, y′, z′): x → z ′ , y → x ′ , z → y ′ . We can see that the new z′-axis coincides with the original x-axis, and that r = x 2 + y 2 + z 2 = x ′ 2 + y ′ 2 + z ′ 2 = r ′ . Physically we expect the angular momentum about the x-axis to be the same as the angular momentum about the z′-axis. We can confirm this mathematically by showing that L ^ x = y p ^ z − z p ^ y = − i ℏ ( y ∂ ∂ z − z ∂ ∂ y ) is equal to L ^ z ′ = x ′ p ^ y ′ − y ′ p ^ x ′ = − i ℏ ( x ′ ∂ ∂ y ′ − y ′ ∂ ∂ x ′ ) . This is obvious since x′ = y, y′ = z. It follows that the eigenfunctions and eigenvalues of L ^ x are the same in terms of the dashed coordinates as that of L ^ z ′ . (2) We know the eigenfunctions Y ℓ , m ℓ ′ ( x ′ , y ′ , z ′ ) and eigenvalues of L ^ z ′ in the transformed coordinates (x′, y′, z′) as they are of the same form as those of the eigenfunctions and eigenvalues of L ^ z in the original coordinates, i.e., we have Y 1 , − 1 ′ ( x ′ , y ′ , z ′ ) = 3 8 π x ′ − i y ′ r ′ ,   Y 1 , 0 ′ ( x ′ , y ′ , z ′ ) = 3 4 π z ′ r ′ Y 1 , 1 ′ ( x ′ , y ′ , z ′ ) = − 3 8 π x ′ + i y ′ r ′ . 205Since L ^ z ′ = L ^ x these are also eigenfunctions of L ^ x Written in terms of the original coordinates these functions become Y 1 , − 1 ′ = 3 8 π y − i z r , Y 1 , 0 ′ = 3 4 π x r , Y 1 , 1 ′ = − 3 8 π y + i z r . We can conclude that the required eigenfunctions L ^ x denoted more conveniently by X 1,1, X 1,0, X 1,−1 are X 1 , − 1 = 3 8 π y − i z r , X 1 , 0 = 3 4 π x r , X 1 , 1 = − 3 8 π y + i z r . Q36(2) Suppose L ^ c 2 and L ^ c z are measured giving the eigenvalues 2ħ 2 and –ħ, respectively. A measurement of L ^ c x is then made. What are the possible results of the measurement of L ^ c x ? Find the probability of each of these possible results.</abstract><cop>United Kingdom</cop><pub>Jenny Stanford Publishing</pub><doi>10.1201/9780429296475-36</doi><oclcid>1195448957</oclcid><tpages>23</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9789814800723
ispartof Quantum Mechanics, 2021, p.201-223
issn
language eng
recordid cdi_proquest_ebookcentralchapters_6320223_43_214
source Ebook Central Perpetual and DDA
title Angular Momenta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Angular%20Momenta&rft.btitle=Quantum%20Mechanics&rft.au=Wan,%20K.%20Kong&rft.date=2021&rft.spage=201&rft.epage=223&rft.pages=201-223&rft.isbn=9789814800723&rft.isbn_list=9814800724&rft_id=info:doi/10.1201/9780429296475-36&rft_dat=%3Cproquest_infor%3EEBC6320223_43_214%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781000022568&rft.eisbn_list=1000022102&rft.eisbn_list=9781000022339&rft.eisbn_list=1000022331&rft.eisbn_list=1000022560&rft.eisbn_list=0429296479&rft.eisbn_list=9780429296475&rft.eisbn_list=9781000022100&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6320223_43_214&rft_id=info:pmid/&rfr_iscdi=true