Hyperbolic Contrastive Learning with Model-Augmentation for Knowledge-Aware Recommendation
Benefiting from the effectiveness of graph neural networks (GNNs) and contrastive learning, GNN-based contrastive learning has become mainstream for knowledge-aware recommendation. However, most existing contrastive learning-based methods have difficulties in effectively capturing the underlying hie...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Benefiting from the effectiveness of graph neural networks (GNNs) and contrastive learning, GNN-based contrastive learning has become mainstream for knowledge-aware recommendation. However, most existing contrastive learning-based methods have difficulties in effectively capturing the underlying hierarchical structure within user-item bipartite graphs and knowledge graphs. Moreover, they commonly generate positive samples for contrastive learning by perturbing the graph structure, which may lead to a shift in user preference learning. To overcome these limitations, we propose hyperbolic contrastive learning with model-augmentation for knowledge-aware recommendation. To capture the intrinsic hierarchical graph structures, we first design a novel Lorentzian knowledge aggregation mechanism, which enables more effective representations of users and items. Then, we propose three model-level augmentation techniques to assist Hyperbolic contrastive learning. Different from the classical structure-level augmentation (e.g., edge dropping), the proposed model-augmentations can avoid preference shifts between the augmented positive pair. Finally, we conduct extensive experiments to demonstrate the superiority (maximum improvement of 11.03%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$11.03\%$$\end{document}) of proposed methods over existing baselines. (Code available at https://github.com/sunshy-1/HCMKR.) |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-70371-3_12 |