SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1
Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associat...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2013-02, Vol.135 (1), p.237-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | American journal of mathematics |
container_volume | 135 |
creator | Biliotti, Leonardo Ghigi, Alessandro |
description | Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associated to V) to the Lie algebra of K. If γ is the K-invariant measure, then Ψ γ is a homeomorphism of the Satake compactification onto the convex envelope of O. For a large class of measures the image of Ψ γ is the convex envelope. As an application we get sharp upper bounds for the first eigenvalue of the Laplacian on functions for an arbitrary Kähler metric on a Hermitian symmetric space. |
doi_str_mv | 10.1353/ajm.2013.0006 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projectmuse_journals_496603_S1080637713100107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23358444</jstor_id><sourcerecordid>23358444</sourcerecordid><originalsourceid>FETCH-LOGICAL-j137t-806fda1fca1f16f095ea2542308045ab84425f3924c65b75cec981c2522a4fc3</originalsourceid><addsrcrecordid>eNotj81Kw0AQxxdRMFaPHoU8gKmzO_uRgJeYph_YJKVZz2G7JmAwtiTpwWfzHXwmt9TDMMzA7_9ByD2FKUWBT6btpgwoTgFAXhCPQgiBRKUuiedeLIiQqWtyMwytO0EB88hzGev4NQ3mb9tSp_lLul34SZFt4kSv5qsk1qsiLx99vUz9rMjSXPtZvPHjfOb__tBbctWYz6G--98TouepTpbBulg4dh20FNUYhCCbd0Mb64bKBiJRGyY4Q5ePC7MLOWeiwYhxK8VOCVvbKKSWCcYMbyxOCD_LHvp9W9uxOw511e6P_ZczrXgkJWBVntqeylKkABSUwx7OWDuM-7469B-d6b8rhiicI8c_cg5RKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Biliotti, Leonardo ; Ghigi, Alessandro</creator><creatorcontrib>Biliotti, Leonardo ; Ghigi, Alessandro</creatorcontrib><description>Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associated to V) to the Lie algebra of K. If γ is the K-invariant measure, then Ψ γ is a homeomorphism of the Satake compactification onto the convex envelope of O. For a large class of measures the image of Ψ γ is the convex envelope. As an application we get sharp upper bounds for the first eigenvalue of the Laplacian on functions for an arbitrary Kähler metric on a Hermitian symmetric space.</description><identifier>ISSN: 0002-9327</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2013.0006</identifier><language>eng</language><publisher>Johns Hopkins University Press</publisher><subject>Algebra ; Compactification ; Homeomorphism ; Induced substructures ; Lie groups ; Mathematical manifolds ; Mathematical theorems ; Mathematical vectors</subject><ispartof>American journal of mathematics, 2013-02, Vol.135 (1), p.237-274</ispartof><rights>Copyright © 2013 The Johns Hopkins University Press</rights><rights>Copyright © The Johns Hopkins University Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23358444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23358444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Biliotti, Leonardo</creatorcontrib><creatorcontrib>Ghigi, Alessandro</creatorcontrib><title>SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1</title><title>American journal of mathematics</title><description>Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associated to V) to the Lie algebra of K. If γ is the K-invariant measure, then Ψ γ is a homeomorphism of the Satake compactification onto the convex envelope of O. For a large class of measures the image of Ψ γ is the convex envelope. As an application we get sharp upper bounds for the first eigenvalue of the Laplacian on functions for an arbitrary Kähler metric on a Hermitian symmetric space.</description><subject>Algebra</subject><subject>Compactification</subject><subject>Homeomorphism</subject><subject>Induced substructures</subject><subject>Lie groups</subject><subject>Mathematical manifolds</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><issn>0002-9327</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81Kw0AQxxdRMFaPHoU8gKmzO_uRgJeYph_YJKVZz2G7JmAwtiTpwWfzHXwmt9TDMMzA7_9ByD2FKUWBT6btpgwoTgFAXhCPQgiBRKUuiedeLIiQqWtyMwytO0EB88hzGev4NQ3mb9tSp_lLul34SZFt4kSv5qsk1qsiLx99vUz9rMjSXPtZvPHjfOb__tBbctWYz6G--98TouepTpbBulg4dh20FNUYhCCbd0Mb64bKBiJRGyY4Q5ePC7MLOWeiwYhxK8VOCVvbKKSWCcYMbyxOCD_LHvp9W9uxOw511e6P_ZczrXgkJWBVntqeylKkABSUwx7OWDuM-7469B-d6b8rhiicI8c_cg5RKg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Biliotti, Leonardo</creator><creator>Ghigi, Alessandro</creator><general>Johns Hopkins University Press</general><scope/></search><sort><creationdate>201302</creationdate><title>SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1</title><author>Biliotti, Leonardo ; Ghigi, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j137t-806fda1fca1f16f095ea2542308045ab84425f3924c65b75cec981c2522a4fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algebra</topic><topic>Compactification</topic><topic>Homeomorphism</topic><topic>Induced substructures</topic><topic>Lie groups</topic><topic>Mathematical manifolds</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biliotti, Leonardo</creatorcontrib><creatorcontrib>Ghigi, Alessandro</creatorcontrib><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biliotti, Leonardo</au><au>Ghigi, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1</atitle><jtitle>American journal of mathematics</jtitle><date>2013-02</date><risdate>2013</risdate><volume>135</volume><issue>1</issue><spage>237</spage><epage>274</epage><pages>237-274</pages><issn>0002-9327</issn><eissn>1080-6377</eissn><abstract>Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associated to V) to the Lie algebra of K. If γ is the K-invariant measure, then Ψ γ is a homeomorphism of the Satake compactification onto the convex envelope of O. For a large class of measures the image of Ψ γ is the convex envelope. As an application we get sharp upper bounds for the first eigenvalue of the Laplacian on functions for an arbitrary Kähler metric on a Hermitian symmetric space.</abstract><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2013.0006</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2013-02, Vol.135 (1), p.237-274 |
issn | 0002-9327 1080-6377 |
language | eng |
recordid | cdi_projectmuse_journals_496603_S1080637713100107 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Compactification Homeomorphism Induced substructures Lie groups Mathematical manifolds Mathematical theorems Mathematical vectors |
title | SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SATAKE-FURSTENBERG%20COMPACTIFICATIONS,%20THE%20MOMENT%20MAP%20AND%20%CE%BB1&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Biliotti,%20Leonardo&rft.date=2013-02&rft.volume=135&rft.issue=1&rft.spage=237&rft.epage=274&rft.pages=237-274&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2013.0006&rft_dat=%3Cjstor_proje%3E23358444%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23358444&rfr_iscdi=true |