SATAKE-FURSTENBERG COMPACTIFICATIONS, THE MOMENT MAP AND λ1
Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associat...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2013-02, Vol.135 (1), p.237-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a complex semisimple Lie group, K a maximal compact subgroup and τ an irreducible representation of K on V. Denote by M the unique closed orbit of G in P(V) and by O its image via the moment map. For any measure γ on M we construct a map Ψ γ from the Satake compactification of G/K (associated to V) to the Lie algebra of K. If γ is the K-invariant measure, then Ψ γ is a homeomorphism of the Satake compactification onto the convex envelope of O. For a large class of measures the image of Ψ γ is the convex envelope. As an application we get sharp upper bounds for the first eigenvalue of the Laplacian on functions for an arbitrary Kähler metric on a Hermitian symmetric space. |
---|---|
ISSN: | 0002-9327 1080-6377 |
DOI: | 10.1353/ajm.2013.0006 |