Non-orientable Genus of a Knot in Punctured $\mathbf{C}P^2
For a closed 4-manifold X, any knot K in the boundary of punctured X bounds a non-orientable and null-homologous embedded surface in punctured X. Thus we can define an invariant \gamma_X^0(K) to be the smallest first Betti number of such surfaces. Note that \gamma^0_{S^4} is equal to the non-orienta...
Gespeichert in:
Veröffentlicht in: | Tokyo journal of mathematics 2015-12, Vol.38 (2), p.561-574 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a closed 4-manifold X, any knot K in the boundary of punctured X bounds a non-orientable and null-homologous embedded surface in punctured X. Thus we can define an invariant \gamma_X^0(K) to be the smallest first Betti number of such surfaces. Note that \gamma^0_{S^4} is equal to the non-orientable 4-ball genus. While it is very likely that for a given X, \gamma^0_X has no upper bound, it is difficult to show it. Recently, Batson showed that \gamma^0_{S^4} has no upper bound. In this paper we show that for any positive integer n, \gamma^0_{n\mathbf{C}P^2} has no upper bound. |
---|---|
ISSN: | 0387-3870 |
DOI: | 10.3836/tjm/1452806057 |