Modeling with Normalized Random Measure Mixture Models

The Dirichlet process mixture model and more general mixtures based on discrete random probability measures have been shown to be flexible and accurate models for density estimation and clustering. The goal of this paper is to illustrate the use of normalized random measures as mixing measures in no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2013-08, Vol.28 (3), p.313-334
Hauptverfasser: Barrios, Ernesto, Lijoi, Antonio, Nieto-Barajas, Luis E., Prünster, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Dirichlet process mixture model and more general mixtures based on discrete random probability measures have been shown to be flexible and accurate models for density estimation and clustering. The goal of this paper is to illustrate the use of normalized random measures as mixing measures in nonparametric hierarchical mixture models and point out how possible computational issues can be successfully addressed. To this end, we first provide a concise and accessible introduction to normalized random measures with independent increments. Then, we explain in detail a particular way of sampling from the posterior using the Ferguson-Klass representation. We develop a thorough comparative analysis for location-scale mixtures that considers a set of alternatives for the mixture kernel and for the nonparametric component. Simulation results indicate that normalized random measure mixtures potentially represent a valid default choice for density estimation problems. As a byproduct of this study an R package to fit these models was produced and is available in the Comprehensive R Archive Network (CRAN).
ISSN:0883-4237
2168-8745
DOI:10.1214/13-STS416