THE TOPOLOGY OF TILE INVARIANTS

In this note, we use techniques in the topology of 2-complexes to recast some tools that have arisen in the study of planar tiling questions. With spherical pictures, we show that the tile counting group associated to a set T of tiles and a set of regions tileable by T is isomorphic to a quotient of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2015-01, Vol.45 (2), p.539-563
1. Verfasser: HITCHMAN, MICHAEL P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we use techniques in the topology of 2-complexes to recast some tools that have arisen in the study of planar tiling questions. With spherical pictures, we show that the tile counting group associated to a set T of tiles and a set of regions tileable by T is isomorphic to a quotient of the second homology group of a 2-complex built from T. In this topological setting, we derive some well-known tile invariants, one of which we apply to the solution of a tiling question involving modified rectangles.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2015-45-2-539