NONOSCILLATORY SOLUTIONS TO FORCED HIGHER-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
By employing Kranoselskii's fixed point theorem, we obtain sufficient conditions for the existence of nonoscillatory solutions of the forced higher-order nonlinear neutral dynamic equation [ x ( t ) + p ( t ) x ( τ ( t ) ) ] ∇ m + ∑ i = 1 k p i ( t ) f i ( x ( τ i ( t ) ) ) = q ( t ) on a time...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2015-01, Vol.45 (2), p.475-507 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By employing Kranoselskii's fixed point theorem, we obtain sufficient conditions for the existence of nonoscillatory solutions of the forced higher-order nonlinear neutral dynamic equation
[
x
(
t
)
+
p
(
t
)
x
(
τ
(
t
)
)
]
∇
m
+
∑
i
=
1
k
p
i
(
t
)
f
i
(
x
(
τ
i
(
t
)
)
)
=
q
(
t
)
on a time scale, where pi(t), fi(t) and q(t) may be oscillatory. Then we establish sufficient and necessary conditions for the existence of nonoscillatory solutions to the equation
[
x
(
t
)
+
p
(
t
)
x
(
τ
(
t
)
)
]
∇
m
+
F
(
t
,
x
(
δ
(
t
)
)
)
=
q
(
t
)
. Finally, we deal with dynamic equation
[
x
(
t
)
+
p
(
t
)
x
(
τ
(
t
)
)
]
∇
m
−
1
Δ
+
∑
i
=
1
k
p
i
(
t
)
f
(
x
(
τ
i
(
t
)
)
)
i
=
q
(
t
)
with mixed ∇ and Δ derivatives. In particular, some interesting examples are included to illustrate the versatility of our results. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2015-45-2-475 |