CUSPIDALITY OF PULLBACKS OF SIEGEL-HILBERT EISENSTEIN SERIES ON HERMITIAN SYMMETRIC DOMAINS
Let GN be either a symplectic, unitary or Hermitian orthogonal group of rank 2N = 2m+2n with m ≤ n. We show that the restriction of a Siegel-Hilbert Eisenstein series on GN to the diagonally embedded group Gm×Gn has a nontrivial cuspidal component in the smaller variable. As a consequence, we explic...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2014-01, Vol.44 (2), p.497-519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let GN be either a symplectic, unitary or Hermitian orthogonal group of rank 2N = 2m+2n with m ≤ n. We show that the restriction of a Siegel-Hilbert Eisenstein series on GN to the diagonally embedded group Gm×Gn has a nontrivial cuspidal component in the smaller variable. As a consequence, we explicitly construct classes of Siegel-Hilbert cuspforms with rational-valued Fourier coefficients. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2014-44-2-497 |