CUSPIDALITY OF PULLBACKS OF SIEGEL-HILBERT EISENSTEIN SERIES ON HERMITIAN SYMMETRIC DOMAINS

Let GN be either a symplectic, unitary or Hermitian orthogonal group of rank 2N = 2m+2n with m ≤ n. We show that the restriction of a Siegel-Hilbert Eisenstein series on GN to the diagonally embedded group Gm×Gn has a nontrivial cuspidal component in the smaller variable. As a consequence, we explic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2014-01, Vol.44 (2), p.497-519
Hauptverfasser: DUNKUM, MOLLY, LANPHIER, DOMINIC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let GN be either a symplectic, unitary or Hermitian orthogonal group of rank 2N = 2m+2n with m ≤ n. We show that the restriction of a Siegel-Hilbert Eisenstein series on GN to the diagonally embedded group Gm×Gn has a nontrivial cuspidal component in the smaller variable. As a consequence, we explicitly construct classes of Siegel-Hilbert cuspforms with rational-valued Fourier coefficients.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2014-44-2-497