ISOSPECTRAL MEASURES
In recent papers a number of authors have considered Borel probability measures μ in Rd such that the Hilbert space L² (μ) has a Fourier basis (orthogonal) of complex exponentials. If μ satisfies this property, the set of frequencies in this set is called a spectrum for μ. Here we fix a spectrum, sa...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2013-01, Vol.43 (5), p.1497-1512 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent papers a number of authors have considered Borel probability measures μ in Rd such that the Hilbert space L² (μ) has a Fourier basis (orthogonal) of complex exponentials. If μ satisfies this property, the set of frequencies in this set is called a spectrum for μ. Here we fix a spectrum, say Γ, and we study the possibilities for measures μ having Γ as spectrum. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2013-43-5-1497 |