ISOSPECTRAL MEASURES

In recent papers a number of authors have considered Borel probability measures μ in Rd such that the Hilbert space L² (μ) has a Fourier basis (orthogonal) of complex exponentials. If μ satisfies this property, the set of frequencies in this set is called a spectrum for μ. Here we fix a spectrum, sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2013-01, Vol.43 (5), p.1497-1512
Hauptverfasser: DUTKAY, DORIN ERVIN, JORGENSEN, PALLE E.T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent papers a number of authors have considered Borel probability measures μ in Rd such that the Hilbert space L² (μ) has a Fourier basis (orthogonal) of complex exponentials. If μ satisfies this property, the set of frequencies in this set is called a spectrum for μ. Here we fix a spectrum, say Γ, and we study the possibilities for measures μ having Γ as spectrum.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2013-43-5-1497