A UNIVERSAL SURVIVAL RING OF CONTINUOUS FUNCTIONS WHICH IS NOT A UNIVERSAL LYING-OVER RING

The ring R of continuous real-valued functions on the one-point compactification of the discrete space of cardinality ℵ₁ is a universal survival ring, yet is not a ULO-ring. Chains of prime ideals of R of cardinality c exist. Moreover, R/P is a divided domain for each P ϵ Spec (R). If the Continuum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2013-01, Vol.43 (3), p.825-854
Hauptverfasser: DOBBS, DAVID E., LEVY, RONALD, SHAPIRO, JAY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ring R of continuous real-valued functions on the one-point compactification of the discrete space of cardinality ℵ₁ is a universal survival ring, yet is not a ULO-ring. Chains of prime ideals of R of cardinality c exist. Moreover, R/P is a divided domain for each P ϵ Spec (R). If the Continuum Hypothesis holds, then there exists a minimal prime ideal P of R such that R/P is an infinite-dimensional valuation domain; however, it is consistent with ZFC that no such minimal primes exist.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2013-43-3-825