m-ISOMETRIC WEIGHTED SHIFTS AND REFLEXIVITY OF SOME OPERATORS
For a positive integer m, a bounded linear operator T on a Hubert space H is called an m-isometry, if $\sum\nolimits_{k = 0}^m {{{\left( { - 1} \right)}^{m - k}}} \left( {\begin{array}{*{20}{c}}m\\k \\\end{array} } \right){T^{*k}}{T^k} = 0$. We characterize all misometric unilateral weighted shift o...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2013-01, Vol.43 (1), p.123-133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a positive integer m, a bounded linear operator T on a Hubert space H is called an m-isometry, if $\sum\nolimits_{k = 0}^m {{{\left( { - 1} \right)}^{m - k}}} \left( {\begin{array}{*{20}{c}}m\\k \\\end{array} } \right){T^{*k}}{T^k} = 0$. We characterize all misometric unilateral weighted shift operators that are not m - 1-isometries in terms of their weight sequences. Then we prove the reflexivity of some classes of operators: (1) All nonnegative integer powers of m-isometric unilateral weighted shifts. (2) The contractions whose spectrum are all the closed unit disc. (3) All non-negative integer powers of hyponormal m-isometries. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2013-43-1-123 |