m-ISOMETRIC WEIGHTED SHIFTS AND REFLEXIVITY OF SOME OPERATORS

For a positive integer m, a bounded linear operator T on a Hubert space H is called an m-isometry, if $\sum\nolimits_{k = 0}^m {{{\left( { - 1} \right)}^{m - k}}} \left( {\begin{array}{*{20}{c}}m\\k \\\end{array} } \right){T^{*k}}{T^k} = 0$. We characterize all misometric unilateral weighted shift o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2013-01, Vol.43 (1), p.123-133
Hauptverfasser: FAGHIH-AHMADI, M., HEDAYATIAN, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a positive integer m, a bounded linear operator T on a Hubert space H is called an m-isometry, if $\sum\nolimits_{k = 0}^m {{{\left( { - 1} \right)}^{m - k}}} \left( {\begin{array}{*{20}{c}}m\\k \\\end{array} } \right){T^{*k}}{T^k} = 0$. We characterize all misometric unilateral weighted shift operators that are not m - 1-isometries in terms of their weight sequences. Then we prove the reflexivity of some classes of operators: (1) All nonnegative integer powers of m-isometric unilateral weighted shifts. (2) The contractions whose spectrum are all the closed unit disc. (3) All non-negative integer powers of hyponormal m-isometries.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2013-43-1-123