C-ALGEBRAIC CHARACTERIZATION OF BOUNDED ORBIT INJECTION EQUIVALENCE FOR MINIMAL FREE CANTOR SYSTEMS
Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms o...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2012-01, Vol.42 (1), p.157-200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebras. Moreover, we construct an ordered group which is an invariant for bounded orbit injection equivalence and does not agree with the K₀ group of the associated C*-crossed-product in general. This new invariant allows us to find sufficient conditions to strengthen bounded orbit injection equivalence to orbit equivalence and strong orbit equivalence. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2012-42-1-157 |