L-R-SMASH BIPRODUCTS, DOUBLE BIPRODUCTS AND A BRAIDED CATEGORY OF YETTER-DRINFELD-LONG BIMODULES
Let H be a bialgebra and D an-bimodule algebra and H-bicomodule coalgebra. We find sufficient conditions on D for the L-R-smash product algebra and coalgebra structures on D ⊗ H to form a bialgebra (in this case we say that (H, D) is an L-R-admissible pair), called L-R-smash biproduct. The Radford b...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2010-01, Vol.40 (6), p.2013-2024 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H be a bialgebra and D an-bimodule algebra and H-bicomodule coalgebra. We find sufficient conditions on D for the L-R-smash product algebra and coalgebra structures on D ⊗ H to form a bialgebra (in this case we say that (H, D) is an L-R-admissible pair), called L-R-smash biproduct. The Radford biproduct is a particular case, and so is, up to isomorphism, a double biproduct with trivial pairing. We construct a prebraided monoidal category ℒℛ(H), whose objects are H-bimodules M endowed with left-left and right-right Yetter-Drinfeld module as well as left-right and right-left Long module structures over H, with the property that, if (H, D) is an L-R-admissible pair, then D is a bialgebra in ℒℛ(H). |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2010-40-6-2013 |