THETA FUNCTIONS ON THE THETA DIVISOR
We show that the gradient and the Hessian of the Riemann theta function in dimension n can be combined to give a theta function of order n + 1 and modular weight (n + 5)/2 defined on the theta divisor. It can be seen that the zero locus of this theta function essentially gives the ramification locus...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2010-01, Vol.40 (1), p.155-176 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the gradient and the Hessian of the Riemann theta function in dimension n can be combined to give a theta function of order n + 1 and modular weight (n + 5)/2 defined on the theta divisor. It can be seen that the zero locus of this theta function essentially gives the ramification locus of the Gaussian map. For Jacobians this leads to a description in terms of theta functions and their derivatives of the Weierstrass point locus on the associated Riemannian surface. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-2010-40-1-155 |