THETA FUNCTIONS ON THE THETA DIVISOR

We show that the gradient and the Hessian of the Riemann theta function in dimension n can be combined to give a theta function of order n + 1 and modular weight (n + 5)/2 defined on the theta divisor. It can be seen that the zero locus of this theta function essentially gives the ramification locus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2010-01, Vol.40 (1), p.155-176
1. Verfasser: DE JONG, ROBIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the gradient and the Hessian of the Riemann theta function in dimension n can be combined to give a theta function of order n + 1 and modular weight (n + 5)/2 defined on the theta divisor. It can be seen that the zero locus of this theta function essentially gives the ramification locus of the Gaussian map. For Jacobians this leads to a description in terms of theta functions and their derivatives of the Weierstrass point locus on the associated Riemannian surface.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2010-40-1-155