COMPUTABLE ERROR BOUNDS FOR FINITE ELEMENT APPROXIMATIONS TO THE DIRICHLET PROBLEM

The constants bounding the solution of Poisson's equation in terms of the given boundary data are derived. Knowledge of these constants then permits the interpolation remainder theory of Barnhill and Gregory to be used to find computable finite element error bounds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 1982-01, Vol.12 (3), p.459-470
Hauptverfasser: BARNHILL, ROBERT E., WILCOX, CALVIN H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The constants bounding the solution of Poisson's equation in terms of the given boundary data are derived. Knowledge of these constants then permits the interpolation remainder theory of Barnhill and Gregory to be used to find computable finite element error bounds.
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-1982-12-3-459