COMPUTABLE ERROR BOUNDS FOR FINITE ELEMENT APPROXIMATIONS TO THE DIRICHLET PROBLEM
The constants bounding the solution of Poisson's equation in terms of the given boundary data are derived. Knowledge of these constants then permits the interpolation remainder theory of Barnhill and Gregory to be used to find computable finite element error bounds.
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 1982-01, Vol.12 (3), p.459-470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The constants bounding the solution of Poisson's equation in terms of the given boundary data are derived. Knowledge of these constants then permits the interpolation remainder theory of Barnhill and Gregory to be used to find computable finite element error bounds. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-1982-12-3-459 |