n-CONVEXITY AND MAJORIZATION
The fact that the nth order divided difference of an (n + 2)-convex function is a symmetric, convex function of its arguments, and is therefore Schur convex, allows us to apply the theory of Majorization in order to derive inequalities for such functions. Several consequences of this result are pres...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 1989, Vol.19 (1), p.303-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fact that the nth order divided difference of an (n + 2)-convex function is a symmetric, convex function of its arguments, and is therefore Schur convex, allows us to apply the theory of Majorization in order to derive inequalities for such functions. Several consequences of this result are presented. In a separate section the theory of majorization is used to compute bounds on the derivatives of polynomials. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/RMJ-1989-19-1-303 |