ON A RIEMANNIAN INVARIANT OF CHEN TYPE

In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2008-01, Vol.38 (2), p.567-581
1. Verfasser: OPREA, TEODOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 581
container_issue 2
container_start_page 567
container_title The Rocky Mountain journal of mathematics
container_volume 38
creator OPREA, TEODOR
description In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifolds M in space forms M͠(c), varying with and the mean curvature of M in M͠(c).
doi_str_mv 10.1216/RMJ-2008-38-2-567
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1205420701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44239463</jstor_id><sourcerecordid>44239463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f80d1c33422169bec5cd0de7a78829d4fc42039fb2c0de20c63518d9221141973</originalsourceid><addsrcrecordid>eNo9kEFLwzAUx4MoOKcfwIPQk7foS17SJMdSOlfZOimd4Cl0aQsrGx3pPPjtzdjY6f94vP-Px4-QZwZvjLP4vVx-Ug6gKWrKqYzVDZkwIyRFZeQtmQCgpEqa-J48jGMPwIQ0OCGvqyJKojLPlklR5EkR5cV3UoahilazKJ1nRVT9fGWP5K6rd2P7dMkpWc-yKp3TxeojT5MFdRjrI-00NMwhCh5-MpvWSddA06paac1NIzonOKDpNtyFNQcXo2S6MeGcCWYUTkly5h780Lfu2P663baxB7_d1_7PDvXWpuvFZXsJv-_3lnGQga2ABQY7M5wfxtG33bXOwJ5k2SDLnmRZ1JbbICt0Xs6dfjwO_loQgqMRMeI_FJ1hvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON A RIEMANNIAN INVARIANT OF CHEN TYPE</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>OPREA, TEODOR</creator><creatorcontrib>OPREA, TEODOR</creatorcontrib><description>In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifolds M in space forms M͠(c), varying with and the mean curvature of M in M͠(c).</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/RMJ-2008-38-2-567</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>Curvature ; Lagrangian function ; Mathematical vectors ; Optimal solutions ; Partial derivatives ; Riemann manifold</subject><ispartof>The Rocky Mountain journal of mathematics, 2008-01, Vol.38 (2), p.567-581</ispartof><rights>Copyright © 2008 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2008 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f80d1c33422169bec5cd0de7a78829d4fc42039fb2c0de20c63518d9221141973</citedby><cites>FETCH-LOGICAL-c368t-f80d1c33422169bec5cd0de7a78829d4fc42039fb2c0de20c63518d9221141973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44239463$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44239463$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,800,829,882,922,27905,27906,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>OPREA, TEODOR</creatorcontrib><title>ON A RIEMANNIAN INVARIANT OF CHEN TYPE</title><title>The Rocky Mountain journal of mathematics</title><description>In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifolds M in space forms M͠(c), varying with and the mean curvature of M in M͠(c).</description><subject>Curvature</subject><subject>Lagrangian function</subject><subject>Mathematical vectors</subject><subject>Optimal solutions</subject><subject>Partial derivatives</subject><subject>Riemann manifold</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLwzAUx4MoOKcfwIPQk7foS17SJMdSOlfZOimd4Cl0aQsrGx3pPPjtzdjY6f94vP-Px4-QZwZvjLP4vVx-Ug6gKWrKqYzVDZkwIyRFZeQtmQCgpEqa-J48jGMPwIQ0OCGvqyJKojLPlklR5EkR5cV3UoahilazKJ1nRVT9fGWP5K6rd2P7dMkpWc-yKp3TxeojT5MFdRjrI-00NMwhCh5-MpvWSddA06paac1NIzonOKDpNtyFNQcXo2S6MeGcCWYUTkly5h780Lfu2P663baxB7_d1_7PDvXWpuvFZXsJv-_3lnGQga2ABQY7M5wfxtG33bXOwJ5k2SDLnmRZ1JbbICt0Xs6dfjwO_loQgqMRMeI_FJ1hvw</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>OPREA, TEODOR</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080101</creationdate><title>ON A RIEMANNIAN INVARIANT OF CHEN TYPE</title><author>OPREA, TEODOR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f80d1c33422169bec5cd0de7a78829d4fc42039fb2c0de20c63518d9221141973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Curvature</topic><topic>Lagrangian function</topic><topic>Mathematical vectors</topic><topic>Optimal solutions</topic><topic>Partial derivatives</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OPREA, TEODOR</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OPREA, TEODOR</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A RIEMANNIAN INVARIANT OF CHEN TYPE</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>38</volume><issue>2</issue><spage>567</spage><epage>581</epage><pages>567-581</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifolds M in space forms M͠(c), varying with and the mean curvature of M in M͠(c).</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/RMJ-2008-38-2-567</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2008-01, Vol.38 (2), p.567-581
issn 0035-7596
1945-3795
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1205420701
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete
subjects Curvature
Lagrangian function
Mathematical vectors
Optimal solutions
Partial derivatives
Riemann manifold
title ON A RIEMANNIAN INVARIANT OF CHEN TYPE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20RIEMANNIAN%20INVARIANT%20OF%20CHEN%20TYPE&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=OPREA,%20TEODOR&rft.date=2008-01-01&rft.volume=38&rft.issue=2&rft.spage=567&rft.epage=581&rft.pages=567-581&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/RMJ-2008-38-2-567&rft_dat=%3Cjstor_proje%3E44239463%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44239463&rfr_iscdi=true