ON A RIEMANNIAN INVARIANT OF CHEN TYPE

In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2008-01, Vol.38 (2), p.567-581
1. Verfasser: OPREA, TEODOR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [6] we proved Chen's inequality regarded as a problem of constrained maximum. In this paper we introduce a Riemannian invariant obtained from Chen's invariant, replacing the sectional curvature by the Ricci curvature of k-order. This invariant can be estimated, in the case of submanifolds M in space forms M͠(c), varying with and the mean curvature of M in M͠(c).
ISSN:0035-7596
1945-3795
DOI:10.1216/RMJ-2008-38-2-567