USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK

We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2004-06, Vol.34 (2), p.599-618
1. Verfasser: DELONG, MATT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 2
container_start_page 599
container_title The Rocky Mountain journal of mathematics
container_volume 34
creator DELONG, MATT
description We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families of quadratic number fields possessing non-trivial lower bounds on their three-rank. We then generalize the method to produce infinitely many such polynomials. Finally, we produce specific examples of quadratic number fields with high three-rank.
doi_str_mv 10.1216/rmjm/1181069870
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44238987</jstor_id><sourcerecordid>44238987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-efb0cad1230a3d0a551488acd4e0125cad96fffdceb6f71918e95b31ce217b93</originalsourceid><addsrcrecordid>eNptkE1vgjAcxptlS-bczjst6Rdg9k9boEeGVYhMHMKuBEqbSDSYood9-2k07rLTkzwvv8OD0CuQd3DBm9hdt5sABEA8EfjkDo1AMO5QX_B7NCKEcsfnwntET8PQEQKMCzpCi3KdLOdYpmmyKpIIR2X-Lde4yPAqz6ZlJPFXGU7z8Jwty88PmeNZItPpGmczHCfzGBdxLqWTh8vFM3ow9XbQL1cdo2Imiyh20myeRGHqKArs4GjTEFW34FJS05bUnAMLglq1TBNw-SkSnjGmVbrxjA8CAi14Q0FpF_xG0DEKL9i97TutDvqotpu22tvNrrY_VV9vqqhMr-5VzudUf-ecGJMLQ9l-GKw2tzmQ6nznP4u3y6IbDr291RlzaXAq0F-4hm1c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>DELONG, MATT</creator><creatorcontrib>DELONG, MATT</creatorcontrib><description>We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families of quadratic number fields possessing non-trivial lower bounds on their three-rank. We then generalize the method to produce infinitely many such polynomials. Finally, we produce specific examples of quadratic number fields with high three-rank.</description><identifier>ISSN: 0035-7596</identifier><identifier>EISSN: 1945-3795</identifier><identifier>DOI: 10.1216/rmjm/1181069870</identifier><language>eng</language><publisher>The Rocky Mountain Mathematics Consortium</publisher><subject>11G05 ; 11R29 ; Arithmetic ; Curves ; Integers ; Mathematical lattices ; Mathematical theorems ; Number theory ; Numbers ; Polynomials ; Series convergence</subject><ispartof>The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.599-618</ispartof><rights>Copyright © 2004 Rocky Mountain Mathematics Consortium</rights><rights>Copyright 2004 Rocky Mountain Mathematics Consortium</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-efb0cad1230a3d0a551488acd4e0125cad96fffdceb6f71918e95b31ce217b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44238987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44238987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229,79752,79760</link.rule.ids></links><search><creatorcontrib>DELONG, MATT</creatorcontrib><title>USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK</title><title>The Rocky Mountain journal of mathematics</title><description>We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families of quadratic number fields possessing non-trivial lower bounds on their three-rank. We then generalize the method to produce infinitely many such polynomials. Finally, we produce specific examples of quadratic number fields with high three-rank.</description><subject>11G05</subject><subject>11R29</subject><subject>Arithmetic</subject><subject>Curves</subject><subject>Integers</subject><subject>Mathematical lattices</subject><subject>Mathematical theorems</subject><subject>Number theory</subject><subject>Numbers</subject><subject>Polynomials</subject><subject>Series convergence</subject><issn>0035-7596</issn><issn>1945-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkE1vgjAcxptlS-bczjst6Rdg9k9boEeGVYhMHMKuBEqbSDSYood9-2k07rLTkzwvv8OD0CuQd3DBm9hdt5sABEA8EfjkDo1AMO5QX_B7NCKEcsfnwntET8PQEQKMCzpCi3KdLOdYpmmyKpIIR2X-Lde4yPAqz6ZlJPFXGU7z8Jwty88PmeNZItPpGmczHCfzGBdxLqWTh8vFM3ow9XbQL1cdo2Imiyh20myeRGHqKArs4GjTEFW34FJS05bUnAMLglq1TBNw-SkSnjGmVbrxjA8CAi14Q0FpF_xG0DEKL9i97TutDvqotpu22tvNrrY_VV9vqqhMr-5VzudUf-ecGJMLQ9l-GKw2tzmQ6nznP4u3y6IbDr291RlzaXAq0F-4hm1c</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>DELONG, MATT</creator><general>The Rocky Mountain Mathematics Consortium</general><general>Rocky Mountain Mathematics Consortium</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040601</creationdate><title>USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK</title><author>DELONG, MATT</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-efb0cad1230a3d0a551488acd4e0125cad96fffdceb6f71918e95b31ce217b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>11G05</topic><topic>11R29</topic><topic>Arithmetic</topic><topic>Curves</topic><topic>Integers</topic><topic>Mathematical lattices</topic><topic>Mathematical theorems</topic><topic>Number theory</topic><topic>Numbers</topic><topic>Polynomials</topic><topic>Series convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DELONG, MATT</creatorcontrib><collection>CrossRef</collection><jtitle>The Rocky Mountain journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DELONG, MATT</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK</atitle><jtitle>The Rocky Mountain journal of mathematics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>34</volume><issue>2</issue><spage>599</spage><epage>618</epage><pages>599-618</pages><issn>0035-7596</issn><eissn>1945-3795</eissn><abstract>We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families of quadratic number fields possessing non-trivial lower bounds on their three-rank. We then generalize the method to produce infinitely many such polynomials. Finally, we produce specific examples of quadratic number fields with high three-rank.</abstract><pub>The Rocky Mountain Mathematics Consortium</pub><doi>10.1216/rmjm/1181069870</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-7596
ispartof The Rocky Mountain journal of mathematics, 2004-06, Vol.34 (2), p.599-618
issn 0035-7596
1945-3795
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_rmjm_1181069870
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 11G05
11R29
Arithmetic
Curves
Integers
Mathematical lattices
Mathematical theorems
Number theory
Numbers
Polynomials
Series convergence
title USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USING%20ELLIPTIC%20CURVES%20TO%20PRODUCE%20QUADRATIC%20NUMBER%20FIELDS%20OF%20HIGH%20THREE-RANK&rft.jtitle=The%20Rocky%20Mountain%20journal%20of%20mathematics&rft.au=DELONG,%20MATT&rft.date=2004-06-01&rft.volume=34&rft.issue=2&rft.spage=599&rft.epage=618&rft.pages=599-618&rft.issn=0035-7596&rft.eissn=1945-3795&rft_id=info:doi/10.1216/rmjm/1181069870&rft_dat=%3Cjstor_proje%3E44238987%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44238987&rfr_iscdi=true