USING ELLIPTIC CURVES TO PRODUCE QUADRATIC NUMBER FIELDS OF HIGH THREE-RANK

We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2004-06, Vol.34 (2), p.599-618
1. Verfasser: DELONG, MATT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use a connection between the arithmetic of elliptic curves of the form y² = x³ + k and the arithmetic of the quadratic number fields Q(√k) and Q(√-3k) to look for quadratic fields with high three-rank. We give a geometric proof of known results on polynomials that give rise to infinite families of quadratic number fields possessing non-trivial lower bounds on their three-rank. We then generalize the method to produce infinitely many such polynomials. Finally, we produce specific examples of quadratic number fields with high three-rank.
ISSN:0035-7596
1945-3795
DOI:10.1216/rmjm/1181069870