DERIVATIVES OF THE HYPERBOLIC DENSITY NEAR AN ISOLATED BOUNDARY POINT

Suppose that c is an isolated boundary point of a hyperbolic domain Ω in the complex plane, and let λΩ denote the density of the hyperbolic metric on Ω. We show that for each pair of nonnegative integers n and m $\begin{array}{*{20}{c}} {\lim } \\ {\omega \to c} \\ \end{array} {\left( {\omega - c} \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Rocky Mountain journal of mathematics 2006-01, Vol.36 (6), p.1873-1884
Hauptverfasser: GILL, BRIAN T., MACGREGOR, THOMAS H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that c is an isolated boundary point of a hyperbolic domain Ω in the complex plane, and let λΩ denote the density of the hyperbolic metric on Ω. We show that for each pair of nonnegative integers n and m $\begin{array}{*{20}{c}} {\lim } \\ {\omega \to c} \\ \end{array} {\left( {\omega - c} \right)^n}{\overline {\left( {\omega - c} \right)\,} ^m}\,\left| {\omega - c} \right|\log \frac{1}{{\left| {\omega - c} \right|}}\frac{{{\partial ^{m + n}}{\lambda _\Omega }\left( \omega \right)}}{{\partial {{\bar \omega }^m}\partial {\omega ^n}}} = \frac{1}{2}{c_n}{c_m}$ where c₀ = 1 and cn = ((-1)n/2) 1 - 3 - 5 ... (2n-1) for n = 1, 2, 3, ... Also we find the asymptotic limit of ${\partial ^{m + n}}{\lambda _\Omega }\left( \omega \right)/\partial {{\bar \omega }^m}\partial {\omega ^n}$ as ω → ∞ when Ω is a hyperbolic domain containing a neighborhood of ∞.
ISSN:0035-7596
1945-3795
DOI:10.1216/rmjm/1181069350