DERIVATIVES OF THE HYPERBOLIC DENSITY NEAR AN ISOLATED BOUNDARY POINT
Suppose that c is an isolated boundary point of a hyperbolic domain Ω in the complex plane, and let λΩ denote the density of the hyperbolic metric on Ω. We show that for each pair of nonnegative integers n and m $\begin{array}{*{20}{c}} {\lim } \\ {\omega \to c} \\ \end{array} {\left( {\omega - c} \...
Gespeichert in:
Veröffentlicht in: | The Rocky Mountain journal of mathematics 2006-01, Vol.36 (6), p.1873-1884 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that c is an isolated boundary point of a hyperbolic domain Ω in the complex plane, and let λΩ denote the density of the hyperbolic metric on Ω. We show that for each pair of nonnegative integers n and m $\begin{array}{*{20}{c}} {\lim } \\ {\omega \to c} \\ \end{array} {\left( {\omega - c} \right)^n}{\overline {\left( {\omega - c} \right)\,} ^m}\,\left| {\omega - c} \right|\log \frac{1}{{\left| {\omega - c} \right|}}\frac{{{\partial ^{m + n}}{\lambda _\Omega }\left( \omega \right)}}{{\partial {{\bar \omega }^m}\partial {\omega ^n}}} = \frac{1}{2}{c_n}{c_m}$ where c₀ = 1 and cn = ((-1)n/2) 1 - 3 - 5 ... (2n-1) for n = 1, 2, 3, ... Also we find the asymptotic limit of ${\partial ^{m + n}}{\lambda _\Omega }\left( \omega \right)/\partial {{\bar \omega }^m}\partial {\omega ^n}$ as ω → ∞ when Ω is a hyperbolic domain containing a neighborhood of ∞. |
---|---|
ISSN: | 0035-7596 1945-3795 |
DOI: | 10.1216/rmjm/1181069350 |