Elliptic equations in the plane satisfying a Carleson measure condition
In this paper we settle (in dimension $n=2$) the open question whether for a divergence form equation $\div (A\nabla u) = 0$ with coefficients satisfying certain minimal smoothness assumption (a Carleson measure condition), the $L^p$ Neumann and Dirichlet regularity problems are solvable for some va...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2010-01, Vol.26 (3), p.1013-1034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we settle (in dimension $n=2$) the open question whether for a divergence form equation $\div (A\nabla u) = 0$ with coefficients satisfying certain minimal smoothness assumption (a Carleson measure condition), the $L^p$ Neumann and Dirichlet regularity problems are solvable for some values of $p\in (1,\infty)$. The related question for the $L^p$ Dirichlet problem was settled (in any dimension) in 2001 by Kenig and Pipher [Kenig, C.E. and Pipher, J.: The Dirichlet problem for elliptic equations with drift terms. Publ. Mat. 45 (2001), no. 1, 199-217]. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/625 |