Socle theory for Leavitt path algebras of arbitrary graphs

The main aim of the paper is to give a socle theory for Leavitt path algebras of arbitrary graphs. We use both the desingularization process and combinatorial methods to study Morita invariant properties concerning the socle and to characterize it, respectively. Leavitt path algebras with nonzero so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2010-01, Vol.26 (2), p.611-638
Hauptverfasser: Aranda Pino, Gonzalo, Martín Barquero, Dolores, Martín González, Cándido, Siles Molina, Mercedes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main aim of the paper is to give a socle theory for Leavitt path algebras of arbitrary graphs. We use both the desingularization process and combinatorial methods to study Morita invariant properties concerning the socle and to characterize it, respectively. Leavitt path algebras with nonzero socle are described as those which have line points, and it is shown that the line points generate the socle of a Leavitt path algebra. A concrete description of the socle of a Leavitt path algebra is obtained: it is a direct sum of matrix rings (of finite or infinite size) over the base field. New proofs of the Graded Uniqueness and of the Cuntz-Krieger Uniqueness Theorems are given, by using very different means.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/611