m$-Berezin transform and compact operators

$m$-Berezin transforms are introduced for bounded operators on the Bergman space of the unit ball. The norm of the $m$-Berezin transform as a linear operator from the space of bounded operators to $L^{\infty}$ is found. We show that the $m$-Berezin transforms are commuting with each other and Lipsch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2006-01, Vol.22 (3), p.867-892
Hauptverfasser: Nam, Kyesook, Zheng, Dechao, Zhong, Changyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:$m$-Berezin transforms are introduced for bounded operators on the Bergman space of the unit ball. The norm of the $m$-Berezin transform as a linear operator from the space of bounded operators to $L^{\infty}$ is found. We show that the $m$-Berezin transforms are commuting with each other and Lipschitz with respect to the pseudo-hyperbolic distance on the unit ball. Using the $m$-Berezin transforms we show that a radial operator in the Toeplitz algebra is compact iff its Berezin transform vanishes on the boundary of the unit ball.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/477