Upper Porous Sets which are Not-σ-Lower Porous
Let X be a nonempty, topologically complete metric space with no isolated points. We show that there exists a closed upper porous set (in~a~strong sense) F\subset X which is not \s-lower porous (in a weak sense). More precisely, we show that there exists a closed (g_1)-shell porous set F\subset X wh...
Gespeichert in:
Veröffentlicht in: | Real analysis exchange 2009, Vol.35 (no. 1), p.21-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X be a nonempty, topologically complete metric space with no isolated points. We show that there exists a closed upper porous set (in~a~strong sense) F\subset X which is not \s-lower porous (in a weak sense). More precisely, we show that there exists a closed (g_1)-shell porous set F\subset X which is not \s-(g_2)-lower porous, where g_1 and~g_2 are arbitrary admissible functions. |
---|---|
ISSN: | 1930-1219 |